
Chapter 25
Capacitance
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1. Capacitors

A capacitor is a two-
terminal device that stores
electric energy.
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2. Capacitance

The figure shows the basic elements of any
capacitor—two isolated conductors of any shape.

These conductors are called plates, regardless of
their geometry.
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2. Capacitance

The figure shows a less general but more conventional arrangement, called a
parallel-plate capacitor, consisting of two parallel conducting plates of area 𝐴
separated by a distance 𝑑.
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2. Capacitance

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: +𝑞 and −𝑞. However, we refer to the charge of a capacitor as being
𝑞, the absolute value of these charges on the plates.

The plates are equipotential surfaces. Moreover, there is a potential difference
between the two plates. For historical reasons, we represent the absolute value of
this potential difference with 𝑉 rather than with the ∆𝑉.

The charge 𝑞 and the potential difference 𝑉 are related by

𝑞 = 𝐶𝑉,

where 𝐶 is called the capacitance of the capacitor. The capacitance is a measure of
how much charge must be put on the plates to produce a certain potential
difference between them: The greater the capacitance, the more charge is
required. The capacitance depends only on the geometry of a capacitor.
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2. Capacitance

The SI unit of capacitance is the coulomb per volt and has the special name farad
(𝐹):

1 farad = 1 F = 1 coulomb per volt = 1 C/V.
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2. Capacitance

Charging a Capacitor

To charge a capacitor we place it in an electric circuit with a battery. An electric
circuit is a path through which charge can flow. A battery is a device that maintains
a potential difference between its terminals by means of internal electrochemical
reactions in which electric force can move internal charge. Terminals are points at
which charge can enter or leave the battery.
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2. Capacitance

𝑞 = 𝐶𝑉

(a) The same.

(b) The same.
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3. Calculating the Capacitance

We want here to calculate the capacitance of a capacitor once we know its
geometry. To do that, we will

(1) assume a charge of magnitude 𝑞 lies on the plates,

(2) calculate the electric field 𝐸 between the plates in terms of 𝑞 using Gauss’ law,

(3) calculate the potential difference 𝑉 between the plates and

(4) calculate 𝐶 using 𝑞 = 𝐶𝑉.
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3. Calculating the Capacitance

Calculating the Electric Field

To evaluate the electric field between the plates of a capacitor, we will take a
Gaussian surface enclosing the positive charge 𝑞. Additionally, we will approximate
the electric field 𝐸 to be constant over the Gaussian surface. The charge 𝑞 and the
electric field 𝐸 are then related by

𝐸𝐴 =
𝑞

𝜀0
,

where 𝐴 here is the area of the Gaussian surface.
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3. Calculating the Capacitance

Calculating the Potential Difference

The potential difference between the plates of a capacitor is related to the electric
field 𝐸 by

𝑉𝑓 − 𝑉𝑖 = − 
𝑖

𝑓

𝐸 ∙ 𝑑  𝑠 .

We will choose a path that follows an electric field line from the negative plate to
the positive plate. Letting 𝑉 represent 𝑉𝑓 − 𝑉𝑖, we can write

𝑉𝑓 − 𝑉𝑖 = − 
−

+

cos 180° 𝐸𝑑𝑠 =  
−

+

𝐸𝑑𝑠 .

Let us now find the capacitance of certain charge configuration.
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3. Calculating the Capacitance

A Parallel-Plate Capacitor

We assume that the plates of the capacitors are
so large and so close together that we can
neglect the fringing of 𝐸 near the edges. The
electric field is then 𝐸 = 𝑞/𝜀0𝐴.

The potential 𝑉 is

𝑉 =  
−

+

𝐸𝑑𝑠 = 𝐸 
−

+

𝑑𝑠 =
𝑞

𝜀0𝐴
 
0

𝑑

𝑑𝑠 =
𝑞𝑑

𝜀0𝐴
.

Using 𝑞 = 𝐶𝑉 we find that

𝐶 =
𝑞

𝑉
=
𝜀0𝐴

𝑑
.
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3. Calculating the Capacitance

A Parallel-Plate Capacitor

𝐶 =
𝜀0𝐴

𝑑
.

A here is the area of the either plate.

Note that the capacitance 𝐶 depends only on the
geometry of the capacitor.

We can express the permittivity constant 𝜀0 in a
unit more appropriate for problems involving
capacitors:

𝜀0 = 8.85 × 10
−12
𝐹

𝑚
= 8.85

𝑝𝐹

𝑚
.
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3. Calculating the Capacitance

A Cylindrical Capacitor

The figure shows a cross section of a cylindrical
capacitor of length 𝐿 formed by two coaxial cylinders
of radii 𝑎 and 𝑏. We assume that 𝐿 ≫ 𝑏 so that we can
neglect the fringing of the electric field near the two
edges.

The charge 𝑞 and the electric field 𝐸 are related by
(using Gauss’ law)

𝐸𝐴 = 𝐸 2𝜋𝑟𝐿 =
𝑞

𝜀0
,

where 𝐿 and 𝑟 are the length and radius of the
Gaussian surface, respectively.
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3. Calculating the Capacitance

A Cylindrical Capacitor

Solving for 𝐸 we find that

𝐸 =
𝑞

2𝜋𝜀0𝐿𝑟
.

The potential difference becomes

𝑉 =  
−

+

𝐸𝑑𝑠 =  
𝑏

𝑎

𝐸(−𝑑𝑟) =
−𝑞

2𝜋𝜀0𝐿
 
𝑏

𝑎 𝑑𝑟

𝑟

=
𝑞

2𝜋𝜀0𝐿
ln
𝑏

𝑎
.

We used that 𝑑𝑠 = −𝑑𝑟.

15



3. Calculating the Capacitance

A Cylindrical Capacitor

Using 𝑞 = 𝐶𝑉 we find that

𝐶 =
𝑞

𝑉
= 2𝜋𝜀0

𝐿

ln 𝑏/𝑎
.
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3. Calculating the Capacitance

A Spherical Capacitor

The figure is a cross-section of a capacitor that consists
of two concentric spherical shells, of radii 𝑎 and 𝑏.
Gauss’ law gives

𝐸𝐴 = 𝐸 4𝜋𝑟2 =
𝑞

𝜀0
,

where 𝑟 is the radius of the Gaussian surface. Solving
for 𝐸 gives

𝐸 =
1

4𝜋𝜀0

𝑞

𝑟2
.

17



3. Calculating the Capacitance

A Spherical Capacitor

The electric potential is then

𝑉 =  
−

+

𝐸𝑑𝑠 =  
𝑏

𝑎

𝐸(−𝑑𝑟) =
−𝑞

4𝜋𝜀0
 
𝑏

𝑎 𝑑𝑟

𝑟2

=
𝑞

4𝜋𝜀0

1

𝑎
−
1

𝑏
=
𝑞

4𝜋𝜀0

𝑏 − 𝑎

𝑎𝑏
.

Using 𝑞 = 𝐶𝑉 we find that

𝐶 =
𝑞

𝑉
= 4𝜋𝜀0

𝑎𝑏

𝑏 − 𝑎
.
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3. Calculating the Capacitance

An Isolated Sphere

We can assign capacitance to a single isolated sphere of radius 𝑅 by assuming that
the “missing plate” is a conducting sphere of infinite radius.

To find an expression for the capacitance we rewrite the capacitance of a spherical
capacitor as

𝐶 = 4𝜋𝜀0
𝑎

1 − 𝑎/𝑏
.

Replacing 𝑎 with 𝑅 and taking the limit that 𝑏 → ∞ gives that

𝐶 = 4𝜋𝜀0𝑅.
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3. Calculating the Capacitance

(a) Decreases.

(b) Increases.

(c) Decreases.

20

𝑞 = 𝐶𝑉

𝐶 =
𝜀0𝐴

𝑑

𝐶 = 2𝜋𝜀0
𝐿

ln 𝑏/𝑎

𝐶 = 4𝜋𝜀0
𝑎𝑏

𝑏 − 𝑎



4. Capacitors in Parallel and in Series

When there are several capacitors in a circuit, we
can sometimes replace them with a single
equivalent capacitor. Such a replacement can
simplify circuit analysis. There are two basic ways
in which capacitors are combined:

Capacitors in Parallel

When a potential difference 𝑉 is applied across
several capacitors connected in parallel, that
potential difference 𝑉 is applied across each
capacitor. The total charge 𝑞 stored on the
capacitors is the sum of the charges stored on all
the capacitors.
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4. Capacitors in Parallel and in Series

Capacitors in Parallel

Capacitors connected in parallel can be replaced
with an equivalent capacitor that has the same
total charge 𝑞 and the same potential difference 𝑉
as the actual capacitors.

Let us derive an expression for the equivalent
capacitance 𝐶eq . The charge on each actual
capacitor is

𝑞1 = 𝐶1𝑉, 𝑞2 = 𝐶2𝑉, 𝑞3 = 𝐶3𝑉.
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4. Capacitors in Parallel and in Series

Capacitors in Parallel

The total charge 𝑞 on the parallel combination is
then

𝑞 = 𝑞1 + 𝑞2 + 𝑞3 = 𝐶1 + 𝐶2 + 𝐶3 𝑉.

Thus,

𝐶eq =
𝑞

𝑉
= 𝐶1 + 𝐶2 + 𝐶3.

Generally, for 𝑛 capacitors connected in parallel

𝐶eq = 
𝑖=1

𝑛

𝐶𝑖 .
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4. Capacitors in Parallel and in Series

Capacitors in Series

When a potential difference 𝑉 is applied across several
capacitors connected in series, the capacitors have identical
charge 𝑞. The sum of the potential differences across all the
capacitors is equal to the applied potential difference 𝑉.

Capacitors that are connected in series can be replaced with
an equivalent capacitor that has the same charge 𝑞 and the
same total potential difference 𝑉 as the actual series
capacitors.

Let us derive an expression for the equivalent capacitance
𝐶eq
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4. Capacitors in Parallel and in Series

Capacitors in Series

The potential difference of each capacitor is

𝑉1 =
𝑞

𝐶1
, 𝑉2 =

𝑞

𝐶2
, 𝑉3 =

𝑞

𝐶3
.

The total potential difference 𝑉 due to the battery is the sum
of these three potential differences:

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 = 𝑞
1

𝐶1
+
1

𝐶2
+
1

𝐶3
.

Thus,

𝐶eq =
𝑞

𝑉
=

1

1/𝐶1 + 1/𝐶2 + 1/𝐶3
.
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4. Capacitors in Parallel and in Series

Capacitors in Series

or
1

𝐶eq
=
1

𝐶1
+
1

𝐶2
+
1

𝐶3
.

Generally, for 𝑛 capacitors connected in series

1

𝐶eq
= 

𝑖=1

𝑛 1

𝐶𝑖
.

Note that 𝐶eq is always less that the smallest capacitance in
the series.
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4. Capacitors in Parallel and in Series

(a) 𝑞/2, 𝑉.

(b) 𝑞, 𝑉/2.
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4. Capacitors in Parallel and in Series

Example 1: (a) Find the equivalent capacitance for
the combination of capacitances shown in the
figure, across which potential difference 𝑉 is
applied. Assume 𝐶1 = 12.0 𝜇F, 𝐶2 = 5.30 𝜇F and
𝐶3 = 4.50 𝜇F.

We first replace capacitors 1 and 2 that are
connected in parallel by their equivalent capacitor.
The capacitance 𝐶12 of the equivalent capacitor is

𝐶12 = 𝐶1 + 𝐶2 = 12.0 𝜇F + 5.30 𝜇F = 17.3 𝜇F.
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4. Capacitors in Parallel and in Series

Now capacitors 𝐶12 and 𝐶3 are in series.
Their equivalent capacitance 𝐶123 is

1

𝐶123
=
1

𝐶12
+
1

𝐶3
=
1

17.3 𝜇F
+
1

4.50 𝜇F

= 0.280 1/𝜇F.

Therefore,
𝐶123 = 3.57 𝜇F.
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4. Capacitors in Parallel and in Series

(b) The potential difference applied to the input
terminals in the figure is 𝑉 = 12.5 V. What is the
charge on 𝐶1?

The charge on capacitor 𝐶123 is

𝑞123 = 𝐶123𝑉 = 3.57 𝜇F 12.5 V = 44.6 𝜇C.
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4. Capacitors in Parallel and in Series

The charge on capacitors 𝐶12 and 𝐶3 is the same as
that on capacitor 𝐶123:

𝑞12 = 𝑞3 = 𝑞123 = 44.6 𝜇C.

The potential difference across 𝐶12 is

𝑉12 =
𝑞12
𝐶12
=
44.6 𝜇C

17.3 𝜇F
= 2.58 V.
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4. Capacitors in Parallel and in Series

The potential difference across 𝐶1 is the
same as that across 𝐶12. Thus,

𝑉1 = 𝑉2 = 𝑉12 = 2.58 V.

Thus,

𝑞1 = 𝐶1𝑉1 = 12.0 𝜇F 2.58 V

= 31.0 𝜇C.
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4. Capacitors in Parallel and in Series

Example 2: Capacitor 1, with 𝐶1 = 3.55 𝜇F, is
charged to a potential difference 𝑉0 = 6.30 V,
using a 6.30 V battery. The battery is then
removed, and the capacitor is connected as in
the figure to an uncharged capacitor 2, with 𝐶2
= 8.95 𝜇F. When switch S is closed, charge
flows between the capacitors. Find the charge
on each capacitor when equilibrium is
reached.

At equilibrium, capacitor 2 is charged until the
potentials 𝑉1 and 𝑉2 across the two capacitors
become equal.
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4. Capacitors in Parallel and in Series

Thus,

𝑉1 = 𝑉2,

implies that
𝑞1
𝐶1
=
𝑞2
𝐶2
.

Charge conservation requires that

𝑞1 + 𝑞2 = 𝑞0 = 𝑉0𝐶1.
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4. Capacitors in Parallel and in Series

Solving for 𝑞1 and 𝑞2 yields

𝑞1 =
𝐶1
2

𝐶1 + 𝐶2
𝑉0 = 6.35 𝜇C,

and

𝑞2 =
𝐶1𝐶2
𝐶1 + 𝐶2

𝑉0 = 16.0 𝜇C.
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5. Energy Stored in an Electric Field

To charge a capacitor, work must be done by an external agent. Starting with an
uncharged capacitor, work must be done to transfer electrons from one plate to
another. This work is practically done by a battery.

We visualize the work required to charge a capacitor as being stored in the form of
electric potential energy 𝑈 in the electric field between the plates. We recover this
energy by discharging the capacitor.

Suppose that a charge 𝑞′ has been transferred from one plate to the other. The
potential difference between the plates at that instant will be 𝑞′/𝐶. If an extra
increment of charge 𝑑𝑞′ is then transferred, the increment of work required will be

𝑑𝑊 = 𝑉′𝑑𝑞′ =
𝑞′

𝐶
𝑑𝑞′.
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5. Energy Stored in an Electric Field

The work required to charge up the capacitor to a final charge 𝑞 is

𝑊 =  𝑑𝑊 =
1

𝐶
 
0

𝑞

𝑞′𝑑𝑞′ =
𝑞2

2𝐶
.

This work is stored as potential energy 𝑈 in the capacitor. Thus,

𝑈 =
𝑞2

2𝐶
.

Using 𝑞 = 𝐶𝑉, we can rewrite 𝑈 as

𝑈 =
1

2
𝐶𝑉2.
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5. Energy Stored in an Electric Field

Consider a parallel-plate capacitor of charge 𝑞 and plate separation 𝑑. The volume
of the space between the plates is Vol = 𝐴𝑑. The stored potential energy in the
capacitor is 𝑈 = 𝑞2/2𝐶.

If the plate separation is doubled (𝑑2 = 2𝑑) the space volume is doubled too.
Because the capacitance is halved (𝐶2 = 𝐶/2), the stored potential energy in the
capacitor is doubled: 𝑈2 = 2𝑈.

This argument is a demonstration of our earlier assumption; the potential energy of
a charged capacitor may be viewed as being stored in the electric field between its
plates.

38



5. Energy Stored in an Electric Field

Energy Density:

The energy density 𝑢, or the potential energy per unit volume between the plates
of a parallel-plate capacitor, where the field is uniform, is given by

𝑢 =
𝑈

𝑉
=
𝑈

𝐴𝑑
=
𝐶𝑉2

2𝐴𝑑
.

Using 𝐶 = 𝜀0𝐴/𝑑, 𝑢 become

𝑢 =
1

2
𝜀0𝐸
2.

Although we have here derived this result for the electric field between the plates
of a parallel-plate capacitor, it holds for any electric field.

39



5. Energy Stored in an Electric Field

Example 3: An isolated conducting sphere whose radius 𝑅 = 6.85 cm has a charge
𝑞 = 1.25 𝑛C.

(a) How much potential energy is stored in the electric field of this charged
conductor?

𝑈 =
𝑞2

2𝐶
=
𝑞2

2 4𝜋𝜀0𝑅
=

1.25 𝑛C 2

8𝜋 8.85
𝑝F
m
0.0685 m

= 103 𝑛J.

(b) What is the energy density at the surface of the sphere?

The electric field at the surface of the sphere is

𝐸 =
1

4𝜋𝜀0

𝑞

𝑅2
40



5. Energy Stored in an Electric Field

The energy density is

𝑢 =
1

2
𝜀0𝐸
2 =
1

2
𝜀0
1

4𝜋𝜀0

𝑞

𝑅2

2

=
𝑞2

32𝜋2𝜀0𝑅
4
=

1.25 𝑛C 2

32𝜋2 8.85
𝑝F
m
0.0685 m 4

= 25.4
𝜇J

m3
.
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6. Capacitor with a Dielectric

A dielectric is an insulating material such as plastic,
glass or waxed paper. If you fill the space between the
plates of a capacitor with a dielectric, the capacitance
increases by a factor 𝜅, called the dielectric constant.

Moreover, the introduction of a dielectric fixes the
maximum potential difference that can be applied
between the plates to a certain value 𝑉max, called the
breakdown potential. The dielectric material breaks
down and conducts electricity when 𝑉max is exceeded.
The maximum value of electric field that a dielectric
can tolerate without breakdown is called the dielectric
strength.
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6. Capacitor with a Dielectric

The capacitance of any capacitor can be written in the general form

𝐶0 = 𝜀0ℒ, in vaccum

where ℒ has the dimension of length. For parallel-plate capacito ℒ = 𝐴/𝑑. With a
dielectric completely filling the space between the plates, the capacitance becomes

𝐶 = 𝜀0𝜅ℒ = 𝜅𝐶0 ≈ 𝜅𝐶air.
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6. Capacitor with a Dielectric

What happens when we insert a dielectric between the plates of a capacitor that is
connected to a battery?

The capacitance will increase by a factor of 𝜅. Because 𝑞 = 𝐶𝑉, the capacitor will
get charge to 𝑞2 = 𝜅𝐶 𝑉 = 𝜅𝑞.
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6. Capacitor with a Dielectric

What happens when we insert a dielectric between the plates of a charged
capacitor?

The capacitance will increase by a factor of 𝜅. Because 𝑉 = 𝑞/𝐶, the potential
across the capacitor will drop to 𝑉2 = 𝑞/ 𝜅𝐶 = 𝑉/𝜅.
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6. Capacitor with a Dielectric

In a region completely filled by a dielectric material of dielectric constant 𝜅, all
electrostatic equations containing the permittivity constant 𝜀0 are to be modified
by replacing 𝜀0 with 𝜅𝜀0.

For example, the magnitude of the electric field due to a point charge inside a
dielectric is

𝐸 =
1

4𝜋𝜀0𝜅

𝑞

𝑟2
.

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric becomes

𝐸 =
𝜎

𝜀0𝜅
.

Since 𝜅 > 1, the effect of a dielectric is to weaken the electric field that would be
otherwise present.
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6. Capacitor with a Dielectric

Example 4: A parallel-plate capacitor whose capacitance 𝐶 is 13.5 pF is charged by
a battery to a potential difference 𝑉 = 12.5 V between its plates. The charging
battery is now disconnected, and a porcelain slab (𝜅 = 6.50) is slipped between
the plates.

(a) What is the potential energy of the capacitor before the slab is inserted?

𝑈𝑖 =
1

2
𝐶𝑉2 =

1

2
13.5 × 10−12 F 12.5 V 2 = 1055 × 10−12 J ≈ 1100 pJ.

(b) What is the potential energy of the capacitor–slab device after the slab is
inserted?

𝑈𝑓 =
1

2
𝐶𝑓𝑉𝑓
2 =
1

2
𝜅𝐶
𝑉

𝜅

2

=
𝑈𝑖
𝜅
=
1055 × 10−12 J

6.50
= 160 × 10−12 J = 160 pJ.
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7. Dielectrics and Gauss’ Law

The figures show a parallel-plate capacitor with and without a dielectric. The field
between the plates induces charges on the faces of the dielectric.

The charge on a conducting plate is said to be free charge because it can move if
we change the electric potential of the plate; the induced charge on the surface of
the dielectric is not free charge because it cannot move from that surface.
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7. Dielectrics and Gauss’ Law

To find the electric field 𝐸0 between the plates,
without the dielectric, we enclose the charge +𝑞
on the top plate with a Gaussian surface and apply
Gauss’ law:

 𝐸 ∙ 𝑑  𝐴 = 𝐴𝐸0 =
𝑞

𝜀0
,

or

𝐸0 =
𝑞

𝜀0𝐴
.
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7. Dielectrics and Gauss’ Law

With the dielectric present, the Gaussian surface
encloses charge +𝑞 on the top plate as well as the
induced charge −𝑞′ on the top face of the
dielectric.

Gauss’ law now reads

 𝐸 ∙ 𝑑  𝐴 = 𝐴𝐸 =
𝑞 − 𝑞′

𝜀0
,

or

𝐸 =
𝑞 − 𝑞′

𝜀0𝐴
.
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7. Dielectrics and Gauss’ Law

𝐸 =
𝑞 − 𝑞′

𝜀0𝐴
.

The effect of the dielectric is to weaken the
original field 𝐸0 by a factor of 𝜅. Thus,

𝐸 =
𝐸0
𝜅
=
𝑞

𝜅𝜀0𝐴
.

We can conclude that

𝑞 − 𝑞′ =
𝑞

𝜅
.

The magnitude of the induced charge 𝑞′ is less
than that of the free charge 𝑞 and is zero when no
dielectric is present.
51
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7. Dielectrics and Gauss’ Law

Therefore, Gauss’s law in the presence of a dielectric becomes

 𝜅𝐸 ∙ 𝑑  𝐴 =
𝑞

𝜀0
. (𝑞 is the free charge only)

Although we derived this equation for a parallel-plate capacitor, it is generally true.

Notes:

1. The quantity 𝜀0𝜅𝐸 is sometimes called the dielectric displacement field 𝐷, so

that Gauss’ law can be rewritten as  𝐷 ∙ 𝑑  𝐴 = 𝑞.

2. The charge enclosed by the Gaussian surface is taken to be the free charge only.

3. We keep 𝜅 inside the integral to allow cases in which 𝜅 is not constant.
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7. Dielectrics and Gauss’ Law

Example 6: The figure shows a parallel-plate
capacitor of plate area 𝐴 and plate separation 𝑑.
A potential difference 𝑉0 is applied between the
plates by connecting a battery between them. The
battery is then disconnected, and a dielectric slab
of thickness 𝑏 and dielectric constant 𝜅 is placed
between the plates as shown. Assume 𝐴
= 115 cm2 , 𝑑 = 1.24 cm , 𝑉0 = 85.5 V , 𝑏
= 0.780 cm, and 𝜅 = 2.61.
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7. Dielectrics and Gauss’ Law

(a) What is the capacitance 𝐶0 before the
dielectric slab is inserted?

𝐶0 =
𝜀0𝐴

𝑑
=
8.85 pF 0.0115 m2

0.0124 m
= 8.21 pF.

(b) What free charge appears on the plates?

𝑞 = 𝐶0𝑉0 = 8.21 pF 85.5 V = 702 pC.

The free charge is not changed by inserting the
slab because the battery was disconnected.
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7. Dielectrics and Gauss’ Law

(c) What is the electric field 𝐸0 in the gaps
between the plates and the dielectric slab?

Applying Gauss’ law to Gaussian surface I yields

 𝜅𝐸 ∙ 𝑑  𝐴 = 𝜅𝐸0𝐴 = 1 𝐸0𝐴 =
𝑞

𝜀0
,

or

𝐸0 =
𝑞

𝜀0𝐴
=

702 pC

8.85 pF 0.0115 m2
= 6.90

kV

m
.

Note that 𝐸0 is note affected by inserting the slab.
because the charge enclosed by the Gaussian
surface is not affected.
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7. Dielectrics and Gauss’ Law

(d) What is the electric field 𝐸1 in the dielectric
slab?

Applying Gauss’ law to Gaussian surface II yields

 𝜅𝐸 ∙ 𝑑  𝐴 = −𝜅𝐸1𝐴 = −
𝑞

𝜀0
,

or

𝐸1 =
𝑞

𝜅𝜀0𝐴
=
𝐸0
𝜅
=
6.90 kV/m

2.61
= 2.64 kV/m.

Recall that we take the free charge only (here −𝑞)
as the enclosed charge.
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7. Dielectrics and Gauss’ Law

(e) What is the potential difference 𝑉 between
the plates after the slab has been introduced?

We integrate along a line from the bottom plate
to the top plate

𝑉 =  
−

+

𝐸𝑑𝑠 = 𝐸0 𝑑 − 𝑏 + 𝐸1𝑏

= 6.90 kVm 0.0124 m − 0.00780 m

+2.64 kVm 0.00780 m = 52.3 V.
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7. Dielectrics and Gauss’ Law

(f) What is the capacitance with the slab in place
between the plates of the capacitor?

From parts (c) and (e)

𝐶 =
𝑞

𝑉
=
702 pC

52.3 V
= 13.2 pF.
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