Chapter 24

Electric Potential




1. Electric Potential Energy

When an electrostatic force acts between two or more charged particles within a
system of particle, we can assign an electric potential energy U to the system. If
the system changes its configuration from state i to state f, the electrostatic force
does work W on the particles. The resulting change AU in potential energy of the
system is
AUZUf—UiZ—W.

The work done by the electrostatic force is path independent, since the
electrostatic force is conservative.

We take the reference configuration of a system of charged particles to be that in
which the particles are all infinitely separated from each other. The energy of this
reference configuration is set to be zero.




1. Electric Potential Energy

Suppose that several charged particles come together from initially infinite
separations (state i) to form a system of neighboring particles (state f). Let the
initial potential energy U; be zero and let W, represents the work done by the
electrostatic force between the particles during the process. The final potential
energy U of the system is

U=—W,.




1. Electric Potential Energy

\. CHECKPOINT 1

In the figure, a proton moves from point ; to point fin a
uniform electric field directed as shown. (a) Does the 7
electric field do positive or negative work on the proton?

(b) Does the electric potential energy of the proton increase or decrease?

(a) Negative work.

(b) Increases.




1. Electric Potential Energy

Example 1: Electrons are continually being knocked out
of air molecules in the atmosphere by cosmic-ray
particles coming in from space. Once released, each

S
electron experiences an electrostatic force F due to

the electric field E that is produced in the atmosphere
by charged particles already on Earth. Near Earth’s
surface the electric field has the magnitude E = 150 N
/C and is directed downward. What is the change AU
in the electric potential energy of a released electron
when the electrostatic force causes it to move
vertically upward through a distance d = 520 m?




1. Electric Potential Energy

The work W done on the electron by the electrostatic
force is

- -

W=F-d=Fdcos0 = Eed
= (150 N/C)(1.60 X 1071 ©)(520 m)
= 1.2 x1071].

AU = —W = —1.2 x 107147,

=

BN
Y




2. Electric Potential

The potential energy of a charged particle in an electric field depends on the charge

magnitude. The potential energy per unit charge, however, has a unique value at
any point in an electric field.

For example, a proton that has potential energy of 2.40 X 10717 ] in an electric
field has potential per unit charge of

240 x 10717 ]
1.60 x 10~1° C
Suppose we next replace the proton with an alpha particle (charge 4+2e). The alpha

particle would have electric potential energy of 4.80 X 10717 ]J. However, the
potential energy per unit charge would be the same 150 J/C.

= 150]/C.




2. Electric Potential

The potential energy per unit charge U/q is a characteristic only of the electric
field. The potential energy per unit charge at a point in an electric field is called the

electric potential V (or simply potential) at that point. Thus,

U
V=—.
q

Note that V is a scalar, not a vector.

The electric potential difference AV between any two points i and f in an electric
field is equal to the difference in potential energy per unit charge between the two
points:
Us U; AU
AV =V, -V, =———= :
q q q




2. Electric Potential

Substituting —W for AU we find that

W
AV =V, =V = ——.
q
The potential difference between two points is the negative of the work done by

the electrostatic force on a unit charge as it moved from one point to the other.

If we set U; = 0 at infinity as our reference potential energy, V must be zero there
too. The electric potential at any point in an electric field is thus

U We

q q
The Sl unit for potential I/ is joule per coulomb or volt (V):

1 volt = 1 joul per coulomb.




2. Electric Potential

In terms of this unit, we can write the electric field in a more convenient unit:

N_ N1V 1) \_,V
E_( E)(T/c)(m-m)_ m’

We can also define an energy unit that is convenient for energy scale of the atomic
physics; the electron-volt (eV). One electron-volt is the energy equal to the work

required to move a single elementary charge e through a potential difference of
one volt (qAV). Thus

leV=e(1V) = (1.60 X 10719 C)(1]/C) = 1.60 x 10~19].




2. Electric Potential

Work Done by an Applied Force

Suppose we move a particle of charge g from point i to point f in an electric field
by applying a force to it. By the work-kinetic energy theorem,

AK = Wy, + W,

where W, is the work done by the applied force and W is the work done by the
electric field.

If AK = 0, we obtain that

Wapp = —W.
Using that AU = —WW/, we obtain that
Wapp = AU = qAV.




2. Electric Potential

\. CHECKPOINT 2

In the figure of Checkpoint 1, we move
the proton from point 7 to point f in a
uniform electric field directed as
shown. (a) Does our force do positive
or negative work? (b) Does the proton
move to a point of higher or lower po-
tential?

—
L
=

7 o

>

12

(a) Positive work.

(b) Higher potential.

Wapp

= AU = qAV




3. Equipotential Surfaces

An equipotential surface is composed of adjacent points that have the same
electric potential. No net work W is done on a charged particle by an electric field
when the particle’s initial point i and final point f lie on the same equipotential

surface.




3. Equipotential Surfaces

Equal work is done along
these paths between the
same surfaces.

No work is done along —
this path on an

equipotential surface.

T
/
i

V, =100V
VZ =80V
No work is done along this path V, =40V

that returns to the same surface.
14




3. Equipotential Surfaces

Equipotental surface
// Field line




3. Equipotential Surfaces

Equipotential surfaces are perpendicular to the electric field E.

If E were not perpendicular to an equipotential surface, it would have a
component along the surface. This component would then do work on a charged
particle as it moved along the surface.




4. Calculating the Potential from the Field

We can calculate the potential difference /Pﬂﬂl Field line

between any two points i and f if we know ||
the electric field vector E along any path (
connecting those points.

Consider the situation shown in the figure.

The differential work dW done on the
particle by the electric field as it moves /

through a differential displacement ds is

dW = F - d3 = q,E - d3.

17




4. Calculating the Potential from the Field

The total work W done between points i
and f is

f—)
W=q0] E'd§
[

Using that W = —AU = —q,AV we obtain
that

f
l
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4. Calculating the Potential from the Field

If we set V; = 0 and rewrite I/ as V we get
f—)
V= —f E-d3.
i

This equation gives us the potential IV at
any point f in an electric field relative to
zero potential at point i. If we let point i be
at infinity, this equation gives us the
potential I/ at any point f relative to zero
potential at infinity.

19
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4. Calculating the Potential from the Field

If we set V; = 0 and rewrite I/ as V we get
f—)
V= —f E-d3.
i

This equation gives us the potential IV at
any point f in an electric field relative to
zero potential at point i. If we let point i be
at infinity, this equation gives us the
potential I/ at any point f relative to zero
potential at infinity.

20
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4. Calculating the Potential from the Field

Uniform Field: Let’s find the potential
difference between points i and f in the

I
I
f a uniform electric field. We obtai 3 /o /
case of a uniform electric field. We obtain \
f f — -
Vf—Vi=—JE>-d§=—J Eds cos 0 | |
i i : :
f | > |
] O
= _E[ ds = —EAx. /_: :Field line
l Higher 1| TD IF\
The is the change in voltage AV between two potential, £ | Lower
equipotential lines in a uniform field of | Ax ~! potential
| |

magnitude E, separated by distance Ax
AV = —EAx.




4. Calculating the Potential from the Field

The electric field vector points from higher
potential toward lower potential. This is true

o _ Path
for any electric field. 3 / /
| |
| |
I I
| |
I |
| |
= > Y,
/_: : Field line
| — |
Higher | N F\
LS | ) |
potentlall E | Lower
:‘ Ax ;: potential
| |
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4. Calculating the Potential from the Field

\' CHECKPOINT 3

23

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What 1s the direc-
tion of the electric field associated with
the surfaces? (b) For each path, 1s the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.

90 V S0V

(a) Rightward. (b) Positive: 1,2,3,5. Negative: 4.

T — —

0V 60 V 50V 40V

(c) 3 then 1,2,5 tie, then 4.




4. Calculating the Potential from the Field

Example 2:

. Higher potential

(a) The figure shows two points i and f in a uniform electric | 7

field E. The points lie on the same electric field line (not
shown) and are separated by a distance d. Find the potential
difference Vy — V; by moving a positive test charge q, from i to

f along the path shown, which is parallel to the field direction. d 0"
E -d3 = Eds cos 0 = Eds. dﬁ.@
sV |—
f f lﬂ
Vf—Vi=—f E-d§=—Ef ds = —FEd.
[ l Y
The potential always decreases along a path that extends in /

the direction of the electric field lines. Lower potential

24




4. Calculating the Potential from the Field

Example 2:

%o

(b) Now find the potential difference V; —V; by -

moving the positive test charge g, from i to f along
the path icf shown in the figure.

Along path cf
F -ds = Eds cos 45°.

f f
Vf—Viz—fE-d§=—Ecos45°J ds Y
C C

= —F cos 45° (\/id) = —Ed.

25
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5. Potential Due to a Point Charge

We here want to derive an expression for the electric
potential V for the space around a charged particle, relative
to zero potential at infinity.

To do that, we move a positive test charge g, from point P to
infinity.

We choose the simplest path connecting the two points—a
radial straight line. Evaluating the dot product gives

S q dr
E-ds = Edscos0 =FEdr =

Atey 12

260
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5. Potential Due to a Point Charge

The line integral becomes

! dr *dr
Vf_Vi=_j L= J_z
; Ameg T 4neo r
T 47‘[80 __] 47‘[80
Setting Vy = 0 (at =), V; = V' and switching R to r we get
_1gq
4wy

Note that g can be positive or negative and that V' has the
same sign as qg.

27




5. Potential Due to a Point Charge

A positively charged particle produces a positive electric
potential. A negatively charged particle produces a negative
electric potential.

Also, note that the expression for IV holds outside or on the
surface of a spherically symmetric charge distribution.

28




6. Potential Due to a Group of Point Charges

The net potential due to n point charges at a given point is

n 1 n Q.
V= Vi — 2 &
i=1  4mEg Lai=1 Ty

Here g; is the charge (positive or negative) of the ith particle, and 7; is the radial
distance of the given point from the ith charge.

An important advantage of potential over electric field is that we sum scalar
quantities instead of vector quantities.




6. Potential Due to a Group of Point Charges

\. CHECKPOINT 4

30

The figure here shows
three arrangements of
two protons. Rank the
arrangements accord-
g to the net electric

[ ) ]
<~ d— d le—d—f=—D —+
-7 - - — ® -
ft) )‘D

(a) () (€)

potential produced at point P by the protons, greatest first.

All the same.




6. Potential Due to a Group of Point Charges

Example 3: What is the electric potential at point P, 0 Go
located at the center of the square of point charges 1 -
shown in the figure? The distance d = 1.3 m, and the I” ‘T”
charges are

q1 = 12 nC, o, = 31 nC,
q; = —24 nC, q, = 17 nC. d o d
Y Y

e




6. Potential Due to a Group of Point Charges

Example 3: What is the electric potential at point P, m

. o
located at the center of the square of point charges - i— -Q
shown in the figure? The distance d = 1.3 m, and the ‘ A

charges are

q1 = 12 nC, o, = 31 nC,
q; = —24 nC, q, = 17 nC. d o d
4 1
V:Z v, = (Ch_l_CIz_l_CIs_l_@)
i=1 dteg\r T r T Y Y
1 g1 +q2+q3+4s @O—d—0Q

41, r 3 4
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6. Potential Due to a Group of Point Charges

q1+q; +q3+q,=(12+31-24+17) x107°C ¢, ¢
=36x107°C. Q d Q
. _\/Ed A A
2
Substituting gives d > y
v <8_99 y 10°N - m2> <3.6 x 1078 C)
C? 1.3//2m
=350 V. 6 p C")

qs 44
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6. Potential Due to a Group of Point Charges

Example 4: (a) In the figure electrons (of charge —e) are
equally spaced and fixed around a circle of radius R.
Relative to V =0 at infinity, what are the electric
potential and electric field at the center C of the circle
due to these electrons?

12 1 12e

V= v, = —
=1 Amte, R

By the symmetry of the problem, E = 0.

34




6. Potential Due to a Group of Point Charges

Example 4: (b) If the electrons are moved along the circle
until they are nonuniformly spaced over a 120° arc (see
the figure), what then is the potential at C? How does the
electric field at C change (if at all)?

The potential is not changed because the distances
between C and each charge are not changed.

The electric field is no longer zero, however, because the
arrangement is no longer symmetric. A net field is now
directed toward the charge distribution.

35




/. Potential Due to an Electric Dipole

The potential due to an electric dipole is the net potential
due to the positive and negative charges.

At point P, the net potential is
2 1 (q ¢ )
V= z Vi=Viy+ Vi = - —
=TT T e (7‘ @ T

_ 4 (7‘(—) — 7‘(+)>
47'[80 repHr-




/. Potential Due to an Electric Dipole

For r > d, we can make the following approximation (see
the figure):

r() —Tu) = dcoso,
and
T =T
Substituting in the expression for IV gives
q dcos6 1 pcosH

V= =
Ame, T2 Ame, T4

-H!{

—f;-'\_

"(+)




/. Potential Due to an Electric Dipole

\.CH ECKPOINT 5

Suppose that three points are set at equal (large) distances r from the center of the di-
pole in Fig. 24-10: Point a 1s on the dipole axis above the positive charge, point b 1s on
the axis below the negative charge, and point ¢ i1s on a perpendicular bisector through
the line connecting the two charges. Rank the points according to the electric potential
of the dipole there, greatest (most positive) first.

Point a, c then b.

38




/. Potential Due to an Electric Dipole

Induced Dipole Moment




/. Potential Due to an Electric Dipole

Induced Dipole Moment

40




8. Calculating the Field from the Potential

Let us see graphically how we can calculate the field from the potential. If we know
the potential V' at all points near a charge distribution, we can draw a family of
equipotential surfaces. The electric field lines, sketched perpendicular to those

surfaces, reveal the variation of E.
We want now to write the mathematical equivalence of this graphical procedure.




8. Calculating the Field from the Potential

The figure shows cross sections of a family of closely
spaced equipotential surfaces.

The potential difference between each pair of

adjacent surfaces is dV. The electric field E at any
point P is perpendicular to the equipotential surface
through P.

Suppose that a positive test charge g, moves
through a displacement ds from an equipotential
surface to the adjacent surface.

The work dW done by the electric field on the test
charge is

— Two

equipotential
surfaces




8. Calculating the Field from the Potential

The work dW can also be written as
dW =F - d§ = goE - d§ = qoEds cos 6.
Equating the two expression for dW vyields E

6 A)
—qodV = qoEds cos 0, %o é/

or
E 6 v
COoS Is
: = . L Two
E_E:OSH is the component of E in the direction of equipotential
ds. Thus, surfaces




8. Calculating the Field from the Potential

The component of E in any direction is the negative
of the rate at which the electric potential changes
with distance in that direction.

If we take ds to be along the x, y and z axes, we
obtain the x, y and z components of E at any point:

oV o av v
_a; Ey__E’ EZ__E.
If we know theiunction V(x,y,z), we can find the
components of E at any point.

E, =

— Two

equipotential
surfaces




8. Calculating the Field from the Potential

When the electric field E is uniform, we write that

v AV

As’
where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because

there is no change in potential along an equipotential surface.




8. Calculating the Field from the Potential

\' CHECKPOINT 6

46

The figure shows three pairs of parallel
plates with the same separation, and the
electric potential of each plate. The elec-
tric field between the plates is uniform
and perpendicular to the plates. (a) Rank
the pairs according to the magnitude of
the electric field between the plates,
greatest first. (b) For which pair is the
electric field pointing rightward? (¢) If an
electron is released midway between the
third pair of plates, does 1t remain there,
move rightward at constant speed, move
leftward at constant speed, accelerate
rightward, or accelerate leftward?

i B AV
As

(a) 2,then3 & 1.

50V +150V 90V +200V (b) 3.
(1) (2) (c) Accelerates
leftward.

900V —400V
(3)




8. Calculating the Field from the Potential

Example 5: Starting with the expression for the potential due to an electric dipole,

1 cos 6
V= P .

Amey T2
derive an expression for the radial component of electric field due to the electric
dipole.

dvV. pcost d 1
or  4mey, drr?

_ pcosb 2y 1 pcoséd
- 4mg, r3) 2mgy 13

E,. =

47




8. Calculating the Field from the Potential

Example 6: The electric potential at any point on the central axis of a uniformly

charged disk is given by
2 2
V = 2e, (\/z + R z)

Starting with this expression, derive an expression for the electric field at any point
on the axis of the disk.

GV o d

Bz = 3z 280 dz (Z V72 +R2)

Y (1 z >
2&9 Vz2 + R?)

48




9. Electric Potential Energy of a System of
Charges

The electric potential energy of a system of fixed point charges is equal to the work
that must be done by an external agent to assemble the system, bringing each
charge in from an infinite distance.

We assume that the charges are stationary at both the initial and final states.




9. Electric Potential Energy of a System of

Charges

Let us find the electric potential energy of the system

shown in the figure. We can build the system by bringing *

g, from infinity and put it at distance r from g4. The work
we do to bring g, near g4 is g,V, where V is the potential
that has been set up by g4. Thus, the electric potential of
the pair of point charges shown in the figure is

1 aq19;
Atey, T

U= Wypp =q,V =

U has the same sign as that of g,q-.

The total potential energy of a system of several particles
is the sum of the potential energies for every pair of
particles in the system.

\\\




9. Electric Potential Energy of a System of
Charges

Example 7: The figure shows three point charges held in Jo
fixed positions by forces that are not shown. What is the
electric potential energy U of this system of charges? SN\
Assume that d = 12 cm and that \\

q1 = *q, q2 = —4q, q3 = t+2q, (J/ \Hd-
and g = 150 nC. / “*\

fr Y
The electric potential energy of the system (energy required ,f \\
. 4

to assemble the system) is D- d -@

U= UlZ + U13 + U23 71 q3

1 1 1
. 4142 + 4143 + QZCIB.

 4me, d e, d dtey, d
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9. Electric Potential Energy of a System of
Charges

_ _ 7o
g 2 (@)( 4q)+ 1 (q)(Zq)+ 1 (—4q)(2q)

 4me, d e, d e d =
10g* N-m?\ 10(150 x 10~°C

- _——1 _(899x102 ( ) /\
Aeyd C? 0.12m ; .

/N

53




9. Electric Potential Energy of a System of

Charges

Example 8: An alpha particle (two protons, two neutrons)
moves into a stationary gold atom (79 protons, 118
neutrons), passing through the electron region that
surrounds the gold nucleus like a shell and headed
directly toward the nucleus. The alpha particle slows until
it momentarily stops when its center is at radial distance r
= 9.23 fm from the nuclear center. Then it moves back
along its incoming path. (Because the gold nucleus is
much more massive than the alpha particle, we can
assume the gold nucleus does not move.) What was the
kinetic energy K; of the alpha particle when it was initially
far away (hence external to the gold atom)? Assume that
the only force acting between the alpha particle and the
gold nucleus is the (electrostatic) Coulomb force.

Y

-

Alpha
particle

Gold
nucleus




9. Electric Potential Energy of a System of
Charges

During the entire process, the mechanical energy of the
alpha particle-gold atom system is conserved.

Y

-

Kl‘l‘Ul:Kf‘l‘Uf ——
Alpha
U; is zero because the atom is neutral. Uy is the electric pm‘lticle
potential energy of the alpha particle-nucleus system. The Gold
electron shell produces zero electric field inside it. K¢ is nucleus
Zero.
1 2e)(79e
K; = Us (2¢)(79¢) =3.94x 1077 ]

~ 4me,9.23 x 10-15 m
= 24.6 MeV.

95




10. Potential of a Charged Isolated Conductor

In Ch. 23, we concluded that E = 0 within an isolated conductor. We then used
Gauss’ law to prove that all excess charge placed on a conductor lies entirely on its
surface. Here we use the first of these facts to prove an extension of the second:

‘An excess charge placed on an isolated conductor will distribute itself on the
surface of that conductor so that all points of the conductor—whether on the
surface or inside—come to the same potential. This is true even if the conductor
has an internal cavity and even if that cavity contains a net charge.

To prove this fact we use that
f—)
Vf—Viz—j E-ds.
l

Since E = 0 for all point within a conductor, V; = V; for all possible pairs of points i
and f in the conductor.




10. Potential of a Charged Isolated Conductor

The figure shows the potential against radial
distance r from the center from an isolated
spherical conducting shell of radius R = 1.0 m and
charge g = 0.10 uC.

For points outside the shell up to its surface, V(r)
= k q/r. Now assume that we push a test charge
though a hole in the shell. No extra work is required

to do this because E becomes zero once the test
charge gets inside the shell. Thus, the potential at
all points inside the shell has the same value as that
of its surface.

12

8

V (kV)

0

0 | 2 3
r (m)




10. Potential of a Charged Isolated Conductor

The figure shows the variation of the electric field 19
with radial distance for the same shell. Everywhere
inside the shell E = 0. Outside the shell E =k g

/r?. The electric field can be obtained from the = 8

potential using £ = —dV /dr. >~
%
o 4

0 1 2 3 4

r (m)




10. Potential of a Charged Isolated Conductor

Spark Discharge from a Charged Conductor

On nonspherical conductors, a surface charge does
not distribute itself uniformly over the surface of
the conductor. At sharp points or sharp edges, the
surface charge density—and thus the external
electric field, which is proportional to it—may reach
very high values. The air around such sharp points
or edges may become ionized, producing the
corona discharge.




10. Potential of a Charged Isolated Conductor

Isolated Conductor in an External Electric Field

If an isolated conductor is placed in an external —=— e e <
electric field, all points of the conductor still come w
to a single potential regardless of whether the _.\_/—_
conductor has an excess charge or not. The free
conduction electrons distribute themselves on the
surface in such a way that the electric field they
produce at interior points cancels the external
electric field. Furthermore, the electron distribution
causes the net electric field at all points on the

surface to be perpendicular to the surface. o e S
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