
Chapter 23
Gauss’ Law
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1. Introduction

Evaluating the electric field of a charge distribution is usually difficult.

If a certain charge distribution is symmetric enough, we then can easily find the
electric field with the help of Gauss’ law.

Gauss’ law considers an imaginary closed surface enclosing a charge distribution,
called the Gaussian surface. The Gaussian surface mimics the symmetry of the
charge distribution. For example, if the charge distribution is spherical, we enclose
the charge with a spherical Gaussian surface.

Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.
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1. Introduction

We can also use Gauss’ law in reverse. If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface.

To know how much charge is enclosed, we first need to know how much electric
field is intercepted by the Gaussian surface.

A measure of intercepted field is called the flux.
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2. Flux of an Electric Field

The electric flux Φ through a surface is the
amount of electric field that pierces the surface.

The area vector 𝑑  𝐴 for an area element (patch
element) on a surface is a vector that is
perpendicular to the element and has a
magnitude equal to the area 𝑑𝐴 of the element.

The electric flux 𝑑Φ through a patch element
with area vector 𝑑  𝐴 is given by

𝑑Φ = 𝐸 cos 𝜃 𝑑𝐴.
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2. Flux of an Electric Field

We can rewrite the last expression as a dot
product:

𝑑Φ = 𝐸 ∙ 𝑑  𝐴.

The total flux through a surface is given by

Φ =  𝐸 ∙ 𝑑  𝐴 ,

where the integration is carried over the surface.

The flux of the electric field is a scalar. Its SI unit
is N ∙ m2/C.
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2. Flux of an Electric Field

Consider the closed Gaussian surface shown in the
figure. An inward piercing field is negative flux. An
outward piercing field is positive flux. A skimming field is
zero flux.

The net flux of the electric field through the surface is

Φ =  𝐸 ∙ ∆  𝐴.

In the limit that ∆  𝐴 → 𝑑  𝐴 we get that

Φ =  𝐸 ∙ 𝑑  𝐴 .
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2. Flux of an Electric Field

Recall that the magnitude of the electric field is
proportional to the number of electric field lines per
unit area. Thus, the flux is proportional to the number
of electric field lines passing through area 𝑑  𝐴.

We can therefore interpret the electric flux as follows:

The electric flux Φ through a Gaussian surface is
proportional to the net number of electric field lines
passing through that surface.
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2. Flux of an Electric Field
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(a) 𝐸𝐴

(b) −𝐸𝐴

(c) 0

(d) 0



3. Flux of an Electric Field

Example 1: the figure shows a Gaussian surface
in the form of a cylinder of radius R immersed in
a uniform electric field, with the cylinder axis
parallel to the field. What is the flux Φ of the
electric field through this closed surface?

We can do the integration by writing the flux as
the sum of three terms: the integrals over the
left cylinder cap 𝑎, the cylindrical surface 𝑏, and
the right cap 𝑐.
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3. Flux of an Electric Field

Φ =  𝐸 ∙ 𝑑  𝐴

=  
𝑎

𝐸 ∙ 𝑑  𝐴 +  
𝑏

𝐸 ∙ 𝑑  𝐴 +  
𝑐

𝐸 ∙ 𝑑  𝐴 .

 
𝑎

𝐸 ∙ 𝑑  𝐴 =  
𝑎

𝐸 cos 𝜋 𝑑𝐴 = −𝐸  
𝑎

𝑑𝐴

= −𝐸𝐴.
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3. Flux of an Electric Field

 
𝑏

𝐸 ∙ 𝑑  𝐴 =  
𝑏

𝐸 cos 𝜋/2 𝑑𝐴 = 0.

 
𝑐

𝐸 ∙ 𝑑  𝐴 =  
𝑐

𝐸 cos 0 𝑑𝐴 = 𝐸  
𝑐

𝑑𝐴

= 𝐸𝐴.

Thus,

Φ = −𝐸𝐴 + 0 + 𝐸𝐴 = 0.
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3. Flux of an Electric Field

Example 2: A nonuniform electric field given by 𝐸
= 3.0𝑥  i + 4.0  j pierces the Gaussian cube shown
in the figure. (𝐸 is in newtons per coulomb and x
is in meters.)

(a) What is the electric flux through the right
face?

Φ𝑅 =  
𝑅

𝐸 ∙ 𝑑  𝐴 =  
𝑅

3.0𝑥  i + 4.0  j ∙ 𝑑𝐴  i

= 3.0  
𝑅

𝑥 𝑑𝐴 = 3.0  
𝑅

3.0 𝑑𝐴 = 9.0𝐴

= 9.0 4.0 = 36 N ∙ m2/C.
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3. Flux of an Electric Field

(b) What is the electric flux through the left face?

Φ𝐿 =  
𝐿

𝐸 ∙ 𝑑  𝐴 =  
𝐿

3.0𝑥  i + 4.0  j ∙ −𝑑𝐴  i

= −3.0  
𝐿

𝑥 𝑑𝐴 = − 3.0  
𝐿

1.0 𝑑𝐴

= −3.0𝐴 = − 3.0 4.0

= −12 N ∙ m2/C.
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3. Flux of an Electric Field

(c) What is the electric flux through the top face?

Φ𝑇 =  
𝑇

𝐸 ∙ 𝑑  𝐴 =  
𝑇

3.0𝑥  i + 4.0  j ∙ 𝑑𝐴  J

= 4.0  
𝑇

𝑑𝐴 = 4.0𝐴 = 4.0 4.0

= 16 N ∙ m2/C.
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4. Gauss’ Law

Gauss’ law relates the net flux Φ of an electric field through a closed surface (a
Gaussian surface) to the net charge 𝑞enc that is enclosed by that surface:

Φ =
𝑞enc

𝜀0
.

Using the expression for Φ we get

 𝐸 ∙ 𝑑  𝐴 =
𝑞enc

𝜀0
.
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4. Gauss’ Law

Let us apply Gauss’ law to the charge(s) shown in the
figure.

Surface 𝑆1: The electric field lines point outward for all
points on the surface. The flux is thus positive and so is the
net charge within the surface (If Φ is positive, 𝑞enc must
be positive too).

Surface 𝑆2: The electric field lines point inward for all
points on the surface. The flux is thus negative and so is
the net charge within the surface.

Surface 𝑆3: The electric field lines pass entirely through
the surface. The flux is thus zero. This surface encloses no
charge and thus 𝑞enc = 0. Gauss’ law too requires that the
net flux is zero.
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4. Gauss’ Law

Surface 𝑆4: This surface encloses zero net charge. Gauss’
law requires that the net flux of the electric field through
this surface is zero. There are as many field lines leaving
the surface as entering it.

Q: What happens if we were to bring charge 𝑄 up close to
𝑆4?

A: The pattern of the electric field lines would change, but
the net flux for each of the four Gaussian surface would
not change. The field lines associated with the added
charge 𝑄 would pass entirely through each of the four
surfaces. 𝑄 would not enter Gauss’ law since 𝑄 lies outside
all four Gaussian surfaces.
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4. Gauss’ Law
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(a) 2

(b) 3

(c) 1



4. Gauss’ Law

Example 3: The figure shows five charged lumps
of plastic and an electrically neutral coin. The
cross section of a Gaussian surface 𝑆 is indicated.
What is the net electric flux through the surface if
𝑞1 = 𝑞4 = +3.1 nC 𝑞2 = 𝑞5 = −5.9 nC, and 𝑞3
= −3.1 nC?

Φ =
𝑞enc

𝜀0
=

𝑞1 + 𝑞2 + 𝑞3

𝜀0

=
3.1 nC − 5.9 nC − 3.1 nC

8.85 × 10−12 C2/N ∙ m2

= −670 N ∙ m2/C.
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5. Gauss’ Law and Coulomb’s Law

Here we want to derive Coulomb’s law from Gauss’
law. For the Gaussian surface in the figure

 𝐸 ∙ 𝑑  𝐴 =  𝐸𝑑𝐴 cos 0 =  𝐸𝑑𝐴 =
𝑞enc

𝜀0
=

𝑞

𝜀0
.

𝐸 is constant over the surface and we can take it out of
the integral:

𝐸  𝑑𝐴 =
𝑞

𝜀0
.
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5. Gauss’ Law and Coulomb’s Law

The integral is just the sum of all differential areas 𝑑𝐴
on the sphere and thus is just the surface area 4𝜋𝑟2.
This gives

𝐸 4𝜋𝑟2 =
𝑞

𝜀0
,

or

𝐸 =
1

4𝜋𝜀0

𝑞

𝑟2
,

which is Coulomb’s law.
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5. Gauss’ Law and Coulomb’s Law
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(a) Equal to Φ𝑖.

(b) Equal to Φ𝑖.

(c) Equal to Φ𝑖.
Φ =

𝑞

𝜀0



6. A Charged Isolated Conductor

Gauss’ law can be used to prove an important theorem about conductors:

“If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be
found within the body of the conductor.”

This sounds reasonable because charges with the same sign repel one another and
get as far away from one another as they can.

Let us use Gauss’ law to prove this speculation.
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6. A Charged Isolated Conductor

The figure shows an isolated copper lump having an
excess charges 𝑞. We place a Gaussian surface just
inside the surface of the conductor.

The electric field inside this conductor must be zero. If
this were not so, the field would move the conduction
electrons, generating a continuous current. Since there
is no such current in isolated conductors, the field
inside is zero.

The electric field is zero for all points on the Gaussian
surface. The flux through the Gaussian surface must be
zero too. The excess charge is not inside the Gaussian
surface, it must lie on the surface of the conductor.
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6. A Charged Isolated Conductor

An Isolated Conductor with a Cavity

Consider the previous figure but now with a cavity that is
totally within the conductor. It is reasonable to say that
when we scoop out the electrically neutral material to
form the cavity we do not change the charge distribution.
Let us prove this conclusion quantitatively using Gauss’
law.

We draw a Gaussian surface surrounding the cavity.
Because 𝐸 = 0 inside the conductor, the flux through this
Gaussian surface is zero. We conclude that the net charge
on the cavity walls is zero. All the excess charge remains
on the outer surface of the conductor.
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6. A Charged Isolated Conductor

The Conductor Removed

Suppose that we remove the conductor completely and leave only the charges. The
electric field would not change and would remain zero inside this thin shell and
would remain unchanged for all external points. The electric field is set up
completely by the charges and not by the conductors.
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6. A Charged Isolated Conductor

The External Electric Field

We have seen that excess charge on an isolated
conductor move entirely to the surface. The charge
distribution (or the charge density 𝜎 = 𝑞/𝐴 ) is
uniform only when the conductor is spherical.
Generally, this nonuniformity makes the
determination of the electric field set up by the
surface charge very difficult.

Luckily, we can determine the electric field just
outside the surface easily using Gauss’ law. Consider
the Gaussian surface shown in the figure.
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6. A Charged Isolated Conductor

The External Electric Field

The electric field 𝐸 at and just outside the conductor
surface must be perpendicular to the conductor
surface. Otherwise, the electric field would have a
component along the conductor surface, causing the
charges to move.

The flux through the internal cap of the Gaussian
surface is zero since there is no field inside the
conductor. The flux through the curved surface of
the cylinder is zero too because the electric field is
parallel to the curved surface.
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6. A Charged Isolated Conductor

The External Electric Field

We assume that the cap is small enough that the
electric is constant over the outer cap. The flux
though the cap is then 𝐸𝐴.

The charge 𝑞enc enclosed by the Gaussian surface is
𝜎𝐴, where 𝜎 is the charge per unit area. Gauss’ law
becomes

𝐸𝐴 =
𝜎𝐴

𝜀0
,

or

𝐸 =
𝜎

𝜀0
.
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6. A Charged Isolated Conductor

Example 4: The figure shows a cross section of a
spherical metal shell of inner radius 𝑅. A point charge
of −5.0 𝜇C is located at a distance 𝑅/2 from the
center of the shell. If the shell is electrically neutral,
what are the (induced) charges on its inner and outer
surfaces? Are those charges uniformly distributed?
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6. A Charged Isolated Conductor

The electric field must be zero inside the metal. This
makes the flux through the Gaussian surface shown
in the figure zero.

With a point charge of −5.0 𝜇C within the shell, a
charge of +5.0 𝜇C must lie on the inner wall of the
shell in order that the net enclosed charge be zero.
This positive charge is not uniformly distributed.

The induced charge on the outer surface must be
− 5.0 𝜇C . This distribution of negative charge is
uniform because the shell is spherical and because
the skewed distribution of positive charge on the
inner wall cannot produce an electric field in the shell
to affect the distribution of charge on the outer wall.
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6. A Charged Isolated Conductor

What is the field pattern inside and outside the shell?

The field lines inside and outside the shell are shown
approximately in the figure. All the field lines
intersect the shell and the point charge
perpendicularly. Inside the shell the pattern of field
lines is skewed because of the skew of the positive
charge distribution. Outside the shell the pattern is
the same as if the point charge were centered and
the shell were missing.
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7. Applying Gauss’ Law: Cylindrical Symmetry

The figure shows a section of an infinitely long
cylindrical plastic rod with linear charge density 𝜆.
We want to find an expression for the electric field 𝐸
at a distance 𝑟 from the axis of the rod.

We choose a cylindrical Gaussian surface of radius 𝑟
and length ℎ, coaxial with the rod. The symmetry of
the problem implies that 𝐸 has the same magnitude
at every point on the Gaussian surface, and the
direction of 𝐸 is radially outward for positive 𝜆.
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7. Applying Gauss’ Law: Cylindrical Symmetry

The flux of 𝐸 through the Gaussian surface is

Φ = 𝐸𝐴 cos 𝜃 = 𝐸 2𝜋𝑟ℎ cos 0 = 𝐸 2𝜋𝑟ℎ .

The charge enclosed by the Gaussian surface is 𝜆ℎ.
Gauss’ law becomes

𝐸 2𝜋𝑟ℎ =
𝜆ℎ

𝜀0
,

yielding

𝐸 =
𝜆

2𝜋𝜀0𝑟
.

Note that the electric field here is proportional to 1/𝑟!
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7. Applying Gauss’ Law: Cylindrical Symmetry

Example 5: The figure shows a narrow vertical
cylinder of height 𝐿 = 1.8 m and radius 𝑅 = 0.10 m.
Assume that charge 𝑄 is uniformly distributed along a
thin wire along the cylinder’s axis. What value of 𝑄
would have put the air at the cylinder’s surface to
have electric field 𝐸𝑐 = 2.4 MN/C?

Because 𝑅 ≪ 𝐿 , we can approximate the charge
distribution as a long line of charge. Thus, for points
that are not too near the ends (compared with 𝑅),

𝐸 =
𝜆

2𝜋𝜀0𝑅
=

𝑄/𝐿

2𝜋𝜀0𝑅
.
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7. Applying Gauss’ Law: Cylindrical Symmetry

Solving for 𝑄 and substituting gives

𝑄 = 2𝜋𝜀0𝑅𝐿𝐸 = 2𝜋𝜀0𝑅𝐿𝐸𝑐

= 2𝜋 8.85 × 10−12 C2/N ∙ m2

× 0.10 m 1.8 m 2.4 MN/C

= 24 𝜇C.
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8. Applying Gauss’ Law: Planar Symmetry

Nonconducting Sheet:

The figure shows a portion of a thin infinite,
nonconducting sheet with a uniform (positive)
surface charge density 𝜎. We want to find the
electric field 𝐸 a distance 𝑟 in front of the sheet.

A Gaussian surface is shown. From the symmetry
of the problem, 𝐸 must be perpendicular to the
sheet, directed away from the surface.
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8. Applying Gauss’ Law: Planar Symmetry

Nonconducting Sheet:

The flux through each of the end caps of the
Gaussian surface is 𝐸𝐴. Gauss’ law reads

𝐸𝐴 + 𝐸𝐴 =
𝜎𝐴

𝜀0
,

or

𝐸 =
𝜎

2𝜀0
.

The electric field is independent of the distance to
the sheet!
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8. Applying Gauss’ Law: Planar Symmetry

Two Conducting Plates:

Consider the conducting plate shown in the figure.
The magnitude of the electric field outside the
plate is 𝐸 = 𝜎1/𝜀0. It points away from the plane.
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8. Applying Gauss’ Law: Planar Symmetry

Two Conducting Plates:

The electric field has the same magnitude when
the charge density is negative. The electric field
points toward the plate.
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8. Applying Gauss’ Law: Planar Symmetry

Two Conducting Plates:

When the two plates are brought near
each other, all the excess charge move
onto the inner faces of the plates, as in the
figure. The electric field at any point
between the plates becomes

𝐸 =
2𝜎1

𝜀0
=

𝜎

𝜀0
.

The electric field is directed away from the
positive plate, toward the negative plate.
The electric field is zero to the left and
right of the plates.
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8. Applying Gauss’ Law: Planar Symmetry

Example 6: The figure shows portions of two large,
parallel, nonconducting sheets, each with a fixed
uniform charge. The magnitudes of the surface
charge densities are 𝜎 + = 6.8 𝜇C/m2 for the
positively charged sheet and 𝜎 − = 4.3 𝜇C/m2 for
the negatively charged sheet.

Find the electric field 𝐸 (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the
sheets.

We first calculate the electric field due to each sheet
and then use the superposition principle to find the
net electric field 𝐸.
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8. Applying Gauss’ Law: Planar Symmetry

The electric field field 𝐸 + due to the positive sheet is
directed away from the sheet and has the magnitude

𝐸 + =
𝜎 +

2𝜀0
=

6.8 × 10−6 C/m2

(2)8.85 × 10−12 C2/N ∙ m2

= 3.84 × 105N/C.

The electric field field 𝐸 − due to the negative sheet
is directed toward the sheet and has the magnitude

𝐸 − =
𝜎 −

2𝜀0
=

4.3 × 10−6 C/m2

(2)8.85 × 10−12 C2/N ∙ m2

= 2.43 × 105N/C.
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8. Applying Gauss’ Law: Planar Symmetry

The magnitude of the net field 𝐸𝐵 between the sheets
is

𝐸𝐵 = 𝐸 + + 𝐸 −

= 3.84 × 105 N/C + 2.43 × 105 N/C

= 6.3 × 105 N/C.

The magnitudes of the left and right net fields 𝐸𝐿 and
𝐸𝑅 are

𝐸𝐿 = 𝐸𝑅 = 𝐸 + − 𝐸 −

= 3.84 × 105N/C − 2.43 × 105 N/C

= 1.4 × 105 N/C.
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9. Applying Gauss’ Law: Spherical Symmetry

We want to prove the shell theorem, presented
before, using Gauss’ law.

“A shell of uniform charge attracts or repels a
charged particle that is outside the shell as if all the
shell’s charge were concentrated at the center of
the shell.”

“If a charged particle is located inside a shell of
uniform charge, there is no electrostatic force on
the particle from the shell.”

Consider the charged spherical shell of total charge
𝑞 and radius 𝑅.
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9. Applying Gauss’ Law: Spherical Symmetry

Applying Gauss’ law to surface 𝑆2 we find that

𝐸 =
1

4𝜋𝜀0

𝑞

𝑟2
. 𝑟 ≥ 𝑅

This proves the first shell theorem.

Applying Gauss’ law to surface 𝑆1 leads to

𝐸 = 0, 𝑟 < 𝑅

which proves the second shell theorem.
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9. Applying Gauss’ Law: Spherical Symmetry

We can apply Gauss’ law to any spherically
symmetric charge distribution such as that of the
figure. Spherical symmetry implies that the charge
density 𝜌 = 𝑞/𝑉 has a single value for each shell.
Equivalently, 𝜌 should be function of 𝑟 only.

When 𝑟 > 𝑅, the Gaussian surface encloses all the
charge and the electric field is identical to the
electric field of a point charge 𝑞.
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9. Applying Gauss’ Law: Spherical Symmetry

When 𝑟 ≤ 𝑅, the enclosed charge is 𝑞′ and we get
that

𝐸 =
1

4𝜋𝜀0

𝑞′

𝑟2
. 𝑟 ≤ 𝑅 .

If the charge 𝑞 within 𝑅 is uniform, or 𝜌 is constant,
then

𝑞′ = 𝑉𝑟𝜌 = 𝑉𝑟

𝑞

𝑉𝑅
= 𝑞

4/3 𝜋𝑟3

4/3 𝜋𝑅3
= 𝑞

𝑟3

𝑅3
.

The electric field becomes

𝐸 =
𝑞

4𝜋𝜀0𝑅3
𝑟. (𝑟 ≤ 𝑅)
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9. Applying Gauss’ Law: Spherical Symmetry

3 & 4, 2 then 1.
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