
Chapter 20
ENTROPY AND THE SECOND LAW OF

THERMODYNAMICS 

1



1. Introduction

A piece of ice at room temperature will eventually melt. The reversed process (a
spot of water freezes) will never occur, however.

The melting of the piece of ice is an example of a one-way process, or irreversible
process.

The fact that there is a preferred direction for the “time arrow” has to do with one
of the most fundamental quantities in physics; entropy.
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2. Irreversible Process and Entropy

Many processes never occur spontaneously in the reversed way.

Heat will never gather to heat up a coffee cup in a room. Perfume in a room will
never gather near the perfume bottle. None of these “wrong-way” processes
would violate the law of conservation of energy.

The direction of an irreversible process is set by a property of the system; the
change in entropy ∆𝑆 of the system. We state the entropy postulate as follows:

“If an irreversible process occurs in a closed system, the entropy of the system
always increases; it never decreases.”

There are two ways to define the change in entropy of a system: (1) In terms of the
system’s temperature and heat gained or lost, and (2) By counting the ways in
which atoms or molecules that make up the system can be arranged. We will
discuss the first approach only.
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3. Change in Entropy

We approach the definition of change in entropy by considering the free expansion
process.
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3. Change in Entropy

This process is irreversible: the gas molecules will
never return to the left half of the container.

The figure shows the 𝑝-𝑉 plot of the process; the
pressure and volume of the gas in the initial state 𝑖
and final state 𝑓.

Pressure and volume are state properties: they
depend only on the state of the gas, not on how it
reached that state.

Temperature and internal energy are other state
properties.

We assume that the gas has still another state
property: entropy.
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3. Change in Entropy

We define the change in entropy 𝑆𝑓 − 𝑆𝑖 of a system during a reversible process
that takes the system from an initial state 𝑖 to a final state 𝑓 as

∆𝑆 = 𝑆𝑓 − 𝑆𝑖 =  
𝑖

𝑓 𝑑𝑄

𝑇
,

where 𝑄 is the energy transferred as heat to or from the system during the process.
∆𝑆 has the same sign as that of 𝑄. The SI unit of entropy is J/K.

We cannot use the expression above to calculate ∆𝑆 for the free expansion process
since it is irreversible.

However, if the entropy is a state property, the change in entropy ∆𝑆 between
states 𝑖 and state 𝑓 must depend only on these states.
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3. Change in Entropy

Let us replace the irreversible free expansion with a reversible process that
connects states 𝑖 and 𝑓. We will then trace a pressure-volume path on a 𝑝-𝑉 plot,
and find a relation between 𝑄 and 𝑇 that enables us to find ∆𝑆.

We know that the temperature of an ideal gas does not change during a free
expansion (𝑇𝑖 = 𝑇𝑓). Thus, points 𝑖 and 𝑓 are both on the same isotherm. We
therefore choose to replace the process with an isothermal process which proceeds
along an isotherm connecting states 𝑖 and 𝑓.
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3. Change in Entropy

8



3. Change in Entropy

The reversible isothermal process and irreversible
free expansion are quite different processes.
However, because both processes have the same
initial and final states, they must have the same
change in entropy.

The isothermal expansion proceeds smoothly as we
remove lead shot slowly. The intermediate states of
the gas are therefore equilibrium states and we can
plot them on the 𝑝-𝑉 diagram.
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3. Change in Entropy

We now evaluate the integral  𝑖
𝑓
𝑑𝑄/𝑇 for the isothermal process:

∆𝑆 = 𝑆𝑓 − 𝑆𝑖 =  
𝑖

𝑓 𝑑𝑄

𝑇
=
1

𝑇
 
𝑖

𝑓

𝑑𝑄 =
𝑄

𝑇
.

Heat 𝑄 has been added to the gas to keep it at constant temperature. Thus, 𝑄 is
positive and the entropy of the gas increases during the process.

To sum up:

To find the entropy change for an irreversible process occurring in a closed system,
replace that process with any reversible process that connects the same initial and
final states. Calculate the entropy change for this reversible process with  𝑖

𝑓
𝑑𝑄/𝑇.
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3. Change in Entropy

When ∆𝑇 ≪ 𝑇 (in kelvins), the entropy change can be approximated as

∆𝑆 = 𝑆𝑓 − 𝑆𝑖 ≈
𝑄

𝑇𝑎𝑣𝑔
,

where 𝑇avg is the average temperature of the system in kelvins during the process.
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3. Change in Entropy

(a), (b) then (c).
𝑄 = 𝐶∆𝑇

∆𝑆 ≈
𝑄

𝑇𝑎𝑣𝑔
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3. Change in Entropy

Entropy as a State Function

We want to prove that the entropy is indeed a state function for the case in which
an ideal gas is taken through a reversible process.

To make the process reversible, it is done slowly in a series of small steps, with the
gas in an equilibrium state at the end of each step. In every step, heat 𝑑𝑄 is
transferred to or from the gas, work 𝑑𝑊 is done by the gas, and the change in
internal energy is 𝑑𝐸int. According to the first law of thermodynamics,

𝑑𝐸int = 𝑑𝑄 − 𝑑𝑊.

Using 𝑑𝑊 = 𝑝𝑑𝑉, 𝑑𝐸int = 𝑛𝐶𝑉𝑑𝑇 and rearranging gives

𝑑𝑄 = 𝑝𝑑𝑉 + 𝑛𝐶𝑉𝑑𝑇.
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3. Change in Entropy

Entropy as a State Function

We then replace 𝑝 with 𝑛𝑅𝑇/𝑉 and divide both sides by 𝑇 to get

𝑑𝑄

𝑇
= 𝑛𝑅

𝑑𝑉

𝑉
+ 𝑛𝐶𝑉

𝑑𝑇

𝑇
.

Integrating between arbitrary initial and final states, we have

 
𝑖

𝑓 𝑑𝑄

𝑇
= 𝑛𝑅 

𝑖

𝑓 𝑑𝑉

𝑉
+ 𝑛𝐶𝑉 

𝑖

𝑓 𝑑𝑇

𝑇
.

The quantity on the left hand side is ∆𝑆 (= 𝑆𝑓 − 𝑆𝑖), which can be written as

∆𝑆 = 𝑆𝑓 − 𝑆𝑖 = 𝑛𝑅 ln
𝑉𝑓
𝑉𝑖
+ 𝑛𝐶𝑉 ln

𝑇𝑓
𝑇𝑖
.
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3. Change in Entropy

Entropy as a State Function

∆𝑆 = 𝑆𝑓 − 𝑆𝑖 = 𝑛𝑅 ln
𝑉𝑓
𝑉𝑖
+ 𝑛𝐶𝑉 ln

𝑇𝑓
𝑇𝑖
.

This result holds for all reversible processes that take the gas from state 𝑖 to state 𝑓.
We can see that ∆𝑆 depends only on the properties of the initial state (𝑉𝑖 , 𝑇𝑖) and
final state (𝑉𝑓 , 𝑇𝑓). ∆𝑆 does not depend on how the gas changes between the two
states.
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3. Change in Entropy

Smaller.

∆𝑆 = 𝑆𝑓 − 𝑆𝑖 = 𝑛𝑅 ln
𝑉𝑓
𝑉𝑖
+ 𝑛𝐶𝑉 ln

𝑇𝑓
𝑇𝑖
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3. Change in Entropy

Example 1: The figure shows two identical
copper blocks of mass𝑚 = 1.5 kg: block 𝐿 at
temperature 𝑇𝑖𝐿 = 60℃ and block 𝑅 at
temperature 𝑇𝑖𝑅 = 20℃ . The blocks are in a
thermally insulated box and are separated by
an insulating shutter. When we lift the
shutter, the blocks eventually come to the
equilibrium temperature 𝑇𝑓 = 40℃. What is
the net entropy change of the two-block
system during this irreversible process? The
specific heat of copper is 386 J/kg ∙ K.
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3. Change in Entropy

To calculate the entropy change, we must
find a reversible process that takes the
system from the initial state (a) to the final
state (b).

We can calculate the net entropy change
∆𝑆rev of the reversible process using

∆𝑆rev =  
𝑖

𝑓 𝑑𝑄

𝑇
,

and then the entropy change for the
irreversible process is equal to ∆𝑆rev.
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3. Change in Entropy

Consider the alterative process shown in the
figure. The blocks can proceed from their initial
state to their final state in a reversible way if we
use a reservoir with a controllable temperature
(a) to extract heat reversibly from block 𝐿 and (b)
to add heat reversibly to block 𝑅.

For block 𝐿

∆𝑆𝐿 =  
𝑖

𝑓 𝑑𝑄

𝑇
=  

𝑇𝑖𝐿

𝑇𝑓𝑚𝑐𝑑𝑇

𝑇
= 𝑚𝑐 

𝑇𝑖𝐿

𝑇𝑓 𝑑𝑇

𝑇

= 𝑚𝑐 ln
𝑇𝑓

𝑇𝑖𝐿
= 1.5 kg 386 J/kg ∙ K ln

313K

333K

= −35.86 J/K.
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3. Change in Entropy

For black 𝑅

∆𝑆𝑅 = 𝑚𝑐 ln
𝑇𝑓
𝑇𝑅

= 1.5 kg 386 J/kg ∙ K ln
313K

293K
= 38.23 J/K.

∆𝑆 = ∆𝑆𝐿 + ∆𝑆𝑅 = −35.86 J/K + 38.23J/K

= 2.4 J/K.

∆𝑆 is positive, in accordance with the
entropy postulate.
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3. Change in Entropy

Example 2: Suppose 1.00 mol of nitrogen gas is confined to the
left side of the container of the figure. You open the stopcock,
and the volume of the gas doubles. What is the entropy change
of the gas for this irreversible process? Treat the gas as ideal.

∆𝑆irr = ∆𝑆rev = 𝑛𝑅 ln
𝑉𝑓
𝑉𝑖
+ 𝑛𝐶𝑉 ln

𝑇𝑓
𝑇𝑖
.

In the free expansion 𝑇𝑖 = 𝑇𝑓 and 2𝑉𝑖 = 𝑉𝑓 . Thus,

∆𝑆irr = ∆𝑆rev = 𝑛𝑅 ln 2 + 𝑛𝐶𝑉 ln 1

= 1.00 mol 8.31
J

mol ∙ K
ln 2 = 5.76 J/K.

∆𝑆 is positive, in accordance with the entropy postulate.
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4. The Second Law of Thermodynamics

We have seen that when the system (see slide 8) proceeds from (a) to (b), the
change in the entropy of the gas (which we take as our system) is positive.
However, because the process is reversible, we can make the system (gas) proceeds
from (b) to (a). In this reversible process, energy must be extracted as heat from
the gas to keep it at a constant temperature. Therefore, 𝑄 is negative and the
entropy of the gas must decrease.

This does not violate the entropy postulate, which states that entropy always
increases, because it holds only for irreversible processes occurring in closed
systems. The process here is not irreversible and the system is not closed (it
exchanges heat with the reservoir).

The enlarged system of the gas + reservoir is closed. Let us calculate ∆𝑆 of the
enlarged system for the process that takes it from (b) to (a).
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4. The Second Law of Thermodynamics

During this process, an amount of heat 𝑄 is transferred from the gas to the
reservoir. The gas loses |𝑄| and the reservoir gains heat |𝑄|. Therefore,

∆𝑆gas = −
𝑄

𝑇
and

∆𝑆re𝑠 = +
𝑄

𝑇
.

The entropy change of the closed system is therefore zero.

We can modify the entropy postulate to include both reversible and irreversible
processes:

“If a process occurs in a closed system, the entropy of the system increases for
irreversible processes and remains constant for reversible processes. It never
decreases.”
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4. The Second Law of Thermodynamics

The entropy may decrease in part of a closed system, but there will always be an
equal or larger entropy increase in another part of the system. The entropy of the
system as a whole never decreases. This fact is one form of the second law of
thermodynamics which can be written as

∆𝑆 ≥ 0.

The greater-than sign applies to irreversible processes and the equal sign to
reversible processes. This inequality applies only to closed systems.

In the real world almost all processes are irreversible, so the entropy of real closed
systems undergoing real processes always increases. Processes in which the
system’s entropy remains constant are always idealization.
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5. Entropy in the Real World: Engines

A heat engine (or simply engine) is a device that extracts energy from its
environment in the form of heat and does useful work.

In every engine, there is a working substance. Water (vapor) is the working
substance in steam engines, and gasoline-air mixture is the working substance in an
automobile engine.

If the engine is to do work on a sustained basis, the working substance must
operate in a cycle: the working substance must pass through a closed series of
thermodynamic processes, called strokes, returning repeatedly to each state in its
cycle.

We want to see what the law of thermodynamics tells us about the operation of
engines.
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5. Entropy in the Real World: Engines

A Carnot Engine

To study real engines we need to analyze an ideal engine first.

In an ideal engine, all processes are reversible and no
wasteful energy transfers occur.

We will focus on a particular ideal gas engine called the
Carnot engine. It turns out to be the best at using energy as
heat to do useful work.

The figure shows schematically the operation of a Carnot
engine. During each cycle, the working substance absorbs
energy 𝑄𝐻 as heat from a thermal reservoir at constant
temperature 𝑇𝐻 and discharges energy 𝑄𝐿 as heat to a
second thermal reservoir at constant lower temperature 𝑇𝐿.
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5. Entropy in the Real World: Engines

A Carnot Engine

The 𝑝-𝑉 plot of Carnot cycle followed the working substance is shown in the figure.
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5. Entropy in the Real World: Engines

A Carnot Engine:

THE WORK: For every complete cycle of the working substance ∆𝐸int = 0. Using
the first law of thermodynamics (∆𝐸int = 𝑄 −𝑊), the net work per cycle is

𝑊 = 𝑄 = 𝑄𝐻 − 𝑄𝐿 .

ENTROPY CHANGE: There are two reversible isothermal heat transfers, and thus
two changes in the entropy of the working substance: one at temperature 𝑇𝐻 and
one at temperature 𝑇𝐿. The net entropy change per cycle is

∆𝑆 = ∆𝑆𝐻 + ∆𝑆𝐿 =
𝑄𝐻
𝑇𝐻

−
𝑄𝐿
𝑇𝐿
.

The entropy is a state variable and for a complete cycle ∆𝑆 = 0. This implies that

𝑄𝐻
𝑇𝐻

=
𝑄𝐿
𝑇𝐿
.
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5. Entropy in the Real World: Engines

A Carnot Engine:

EFFICIENCY OF A CARNOT ENGINE: The thermal efficiency 𝜀 of an engine is the
ratio of the work the engine does (energy we get) to the energy absorbed as heat
(energy we pay) in a cycle:

𝜀 =
energy we get

energy we pay
=
𝑊

𝑄𝐻
.

For a Carnot engine

𝜀𝐶 =
𝑄𝐻 − 𝑄𝐿
𝑄𝐻

= 1 −
𝑄𝐿
𝑄𝐻

,

or equivalently,

𝜀𝐶 = 1 −
𝑇𝐿
𝑇𝐻
.
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5. Entropy in the Real World: Engines

A Carnot Engine:

A perfect engine (with 𝑄𝐿 = 0) is shown in the figure.

Such a 100% efficiency is achieved when 𝑇𝐿 = 0 or 𝑇𝐻
→ ∞, which are impossible.

This fact gives an alternative version of the second law
of thermodynamics, which says in short, there are no
perfect engines:

“No series of processes is possible whose sole result is
the transfer of energy as heat from a thermal reservoir
and the complete conversion of this energy to work.”
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5. Entropy in the Real World: Engines

Stirling Engine:
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5. Entropy in the Real World: Engines

34

𝜀𝐶 = 1 −
𝑇𝐿
𝑇𝐻
.

c, b and then a.



3. Change in Entropy

Example 3: Imagine a Carnot engine that operates between the temperatures 𝑇𝐻
= 850 K and 𝑇𝐿 = 300 K. The engine performs 1200 J of work each cycle, which
takes 0.25 s.

(a) What is the efficiency of this engine?

𝜀𝐶 = 1 −
𝑇𝐿
𝑇𝐻
= 1 −

300 K

850 K
= 0.647 = 64.7%.

(b) What is the average power of this engine?

𝑃 =
𝑊

𝑡
=
1200 J

0.25 s
= 4.8 kW.
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3. Change in Entropy

(c) How much energy 𝑄𝐻 is extracted as heat from the high-temperature
reservoir every cycle?

We know that 𝜀𝐶 = 𝑊/|𝑄𝐻|. Thus,

𝑄𝐻 =
𝑊

𝜀𝐶
=
1200 J

0.647
= 1.85 kJ.

(d) How much energy 𝑄𝐿 is delivered as heat to the low temperature reservoir
every cycle?

𝑄𝐿 = 𝑄𝐻 −𝑊 = 1855 J − 1200 J = 655 J.
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3. Change in Entropy

(e) By how much does the entropy of the working substance change as a result
of the energy transferred to it from the high-temperature reservoir? From it to
the low-temperature reservoir?

∆𝑆𝐻=
𝑄𝐻
𝑇𝐻
=
1855 J

850 K
= 2.18 J/K.

∆𝑆𝐿=
−𝑄𝐿
𝑇𝐿

=
−655 J

300 K
= −2.18 J/K.

∆𝑆 = ∆𝑆𝐻 + ∆𝑆𝐿= 0,

as it should be for a reversible process.
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3. Change in Entropy

Example 4: An inventor claims to have constructed an engine that has an efficiency
of 75% when operated between the boiling and freezing points of water. Is this
possible?

The efficient of any engine cannot exceed the efficiency of a Carnot engine.

𝜀𝐶 = 1 −
273 K

373 K
= 0.268 = 26.8%.

The claimed engine is impossible.
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6. Entropy in the Real World: Refrigerators

A refrigerator is a device that uses work to transfer energy
from a low-temperature reservoir to a high-temperature
reservoir on a sustained basis.

Let us consider an ideal refrigerator. In an ideal refrigerator,
all processes are reversible and no wasteful energy transfers
occur.

The figure shows the basic elements of an ideal refrigerator.

Its operation is the reverse of how the Carnot engine
operates. We call such an ideal refrigerator, a Carnot
refrigerator.
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6. Entropy in the Real World: Refrigerators

We would like to extract as much energy 𝑄𝐿 as possible
from the low temperature reservoir (what we want) for the
least amount of work 𝑊 (what we pay for). A measure of
the efficiency of a refrigerator is then

𝐾 =
what we want

what we pay for
=
𝑄𝐿
𝑊
.

𝐾 is called the coefficient of performance. The first law of
thermodynamics for a Carnot refrigerator gives 𝑊 = 𝑄𝐻
− 𝑄𝐿 . We then write

𝐾 =
𝑄𝐿

𝑄𝐻 − 𝑄𝐿
.
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6. Entropy in the Real World: Refrigerators

The second law of thermodynamics requires that
𝑄𝐻

𝑇𝐻
=

𝑄𝐿

𝑇𝐿
.

𝐾 can be rewritten as
n

𝐾 =
𝑇𝐿

𝑇𝐻 − 𝑇𝐿
.
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6. Entropy in the Real World: Refrigerators

The figure shows a perfect refrigerator that transfers heat 𝑄
from a cold reservoir to a warm reservoir without the need
for work.

The entropy of working substance does not change because
the unit is working in cycles. The entropy of the reservoirs,
however, do change:

∆𝑆 = ∆𝑆𝐻 + ∆𝑆𝐿 =
𝑄

𝑇𝐻
−
𝑄

𝑇𝐿
.

Because 𝑇𝐻 > 𝑇𝐿, ∆𝑆 is negative and the change of entropy
of the closed system of the refrigerator + reservoirs is
negative. Therefore, a perfect refrigerator does not exist.
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6. Entropy in the Real World: Refrigerators

This result leads to another formulation of the second law of
thermodynamics, which says in short, there are no perfect
refrigerators:

“No series of processes is possible whose sole result is the
transfer of energy as heat from a reservoir at a given
temperature to a reservoir at a higher temperature.”
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