
Chapter 19
The Kinetic Theory of Gases
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1. The Kinetic Theory of Gases

The kinetic theory of gases relates the motion of atoms to the volume, pressure
and temperature of gases.
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2. Avogadro’s Number

The mole is one of the seven SI base units. It is defined as follows:

“One mole is the number of atoms in a 12 g sample of carbon-12.”

The number of atoms or molecules in a mole is given (experimentally) by
Avogadro’s number:

𝑁𝐴 = 6.022 × 10
23 mol−1.

The number of moles 𝑛 contained in a sample of any substance is equal to the ratio
of the number of molecules 𝑁 in the sample to the number of molecules 𝑁𝐴 in
1 mol:

𝑛 =
𝑁

𝑁𝐴
.
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2. Avogadro’s Number

The number of moles 𝑛 is related to the mass of the sample 𝑀sam and either the
molar mass 𝑀 (mass of 1 mole) or the molecular mass 𝑚 (mass of one molecule)
by:

𝑛 =
𝑀sam
𝑀

=
𝑀sam
𝑚𝑁𝐴

,

where we used that𝑀 = 𝑚𝑁𝐴.
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3. Ideal Gases

Experimentally, it was found that the pressure 𝑝, volume 𝑉 and temperature 𝑇 for
any gas are related by

𝑝𝑉 = 𝑛𝑅𝑇,

where 𝑛 is the number of moles of gas and 𝑅 is the gas constant given by

𝑅 = 8.31 J/mol ∙ K.

This is the ideal gas law. It holds for any gas at low density.
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3. Ideal Gases

We can rewrite the ideal gas law in terms of the Boltzmann constant 𝑘, where

𝑘 =
𝑅

𝑁𝐴
=

8.31 J/mol ∙ K

6.02 × 1023 mol−1
= 1.38 × 10−23 J/K.

We can write 𝑛𝑅 as

𝑛𝑅 =
𝑁

𝑁𝐴
𝑁𝐴𝑘 = 𝑁𝑘.

The Ideal gas law can be written as

𝑝𝑉 = 𝑁𝑘𝑇.
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3. Ideal Gases

Work Done by an Ideal Gas at Constant Temperature

Consider an ideal gas in a piston-cylinder arrangement. Suppose that we allow the
gas to expand from an initial volume 𝑉𝑖 to a final volume 𝑉𝑓, while we keep the
temperature 𝑇 constant. Such a process is called an isothermal expansion. The
reverse is an isothermal compression.

On a 𝑝-𝑉 diagram, an isotherm is a curve that connects points that have the same
temperature. For 𝑛 moles of an ideal gas, an isotherm is the graph of the equation

𝑝 = 𝑛𝑅𝑇
1

𝑉
= cosntant

1

𝑉
.
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3. Ideal Gases

Work Done by an Ideal Gas at Constant Temperature

The figure shows three isotherms. An isothermal
expansion (red curve) is shown too.

The work done by an ideal gas during an isothermal
expansion is

𝑊 =  
𝑉𝑖

𝑉𝑓

𝑝𝑑𝑉 =  
𝑉𝑖

𝑉𝑓 𝑛𝑅𝑇

𝑉
𝑑𝑉 = 𝑛𝑅𝑇 

𝑉𝑖

𝑉𝑓 𝑑𝑉

𝑉

= 𝑛𝑅𝑇 ln𝑉 𝑉𝑖

𝑉𝑓
= 𝑛𝑅𝑇 ln

𝑉𝑓

𝑉𝑖
.
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3. Ideal Gases

𝑝𝑉 = 𝑛𝑅𝑇

𝑇 =
𝑝𝑉

𝑛𝑅
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3. Ideal Gases

Example 2: A cylinder contains 12 L of oxygen at 20°C and 15 atm . The
temperature is raised to 35°C, and the volume is reduced to 8.5 L. What is the final
pressure of the gas in atmospheres? Assume that the gas is ideal.

The ideal gas law for the initial and final states, respectively, reads

𝑝𝑖𝑉𝑖 = 𝑛𝑅𝑇𝑖 ,

𝑝𝑓𝑉𝑓 = 𝑛𝑅𝑇𝑓.

Dividing the second equation by the first and rearranging give

𝑝𝑓 =
𝑝𝑖𝑉𝑖𝑇𝑓
𝑉𝑓𝑇𝑖

=
15 atm 12 L 308 K

8.5 L 293 K
= 22 atm.
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3. Ideal Gases

Example 3: One mole of oxygen (assume it to be
an ideal gas) expands at a constant temperature
𝑇 of 310 K from an initial volume 𝑉𝑖 of 12 L to a
final volume 𝑉𝑓 of 19 L. How much work is done
by the gas during the expansion?

𝑊 = 𝑛𝑅𝑇 ln
𝑉𝑓

𝑉𝑖

= 1.00 mol 8.31
J

mol∙K
310 K ln

19 L

12 L

= 1180 J.
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4. Pressure, Temperature, and RMS Speed

For a set of 𝑛 values 𝑥1, 𝑥2, … , 𝑥𝑛 , the mean value 𝑥 (or average value 𝑥avg) is

𝑥 =
1

𝑛
𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 .

The root mean square (rms) value 𝑥rms is defined as

𝑥rms =
1

𝑛
𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
2 .
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4. Pressure, Temperature, and RMS Speed

Example 3: Here are five numbers: 5, 11, 32, 67, and 89.

(a) What is the average value 𝑛avg of these numbers?

𝑛avg =
5 + 11 + 32 + 67 + 89

5
= 40.8.

(b) What is the rms value 𝑛rm𝑠 of these numbers?

𝑛avg =
52 + 112 + 322 + 672 + 892

5
= 51.1.
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4. Pressure, Temperature, 
__and RMS Speed
The pressure 𝑝 exerted by 𝑛 moles of an ideal
gas is related to the rms speed 𝑣rms of the
molecules by

𝑝 =
𝑛𝑀𝑣rms

2

3𝑉
,

where 𝑀 is the molar mass of the gas. Using
the ideal gas law we write

𝑣rms =
3𝑅𝑇

𝑀
.
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5. Translational Kinetic Energy

The average translational kinetic energy of a single molecule of an ideal gas is

𝐾avg =
1

2
𝑚𝑣rms

2 =
1

2
𝑚
3𝑅𝑇

𝑀
=
3𝑅𝑇

2𝑁𝐴
=
3

2
𝑘𝑇.

At a given temperature 𝑇, all ideal gas molecules—no matter what their mass—

have the same average translational kinetic energy—namely,
3

2
𝑘𝑇.

When we measure the temperature of a gas, we are also measuring the average
translational kinetic energy of its molecules.
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𝑀

𝑚
= 𝑁𝐴; 𝑅 = 𝑘𝑁𝐴



5. Translational Kinetic Energy

(a) All tie.

(b) 3,2 then 1.
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𝐾avg =
3

2
𝑘𝑇

𝑣rms =
3𝑅𝑇

𝑀

𝑀 = 𝑁𝐴𝑚



5. Translational Kinetic Energy

Internal Energy 𝐸int

We can assume that the internal energy 𝐸int of a monatomic ideal gas is the sum of
the translational kinetic energies of its atoms:

𝐸int = 𝑁𝐾avg =
3

2
𝑁𝑘𝑇 =

3

2
𝑛 𝑁𝐴𝑘 𝑇 =

3

2
𝑛𝑅𝑇.

“The internal energy of an ideal gas is a function of the gas temperature only.”

A temperature change of ∆𝑇 results in a change of internal energy ∆𝐸int given by

∆𝐸int =
3

2
𝑛𝑅∆𝑇.
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6. The Molar Specific Heats of an Ideal Gas

We can now use the expression for 𝐸int to derive
an expression for the molar specific heat of an
ideal gas.

Remember that, for a solid or liquid

𝑄 = 𝐶∆𝑇 = 𝑛𝑐mol∆𝑇.

However, for gases, the heat 𝑄 depends on the
details of a process. Thus, we shall derive two
expressions for 𝑐mol:

(1) When the volume of the gas is kept constant.

(2) When the pressure of the gas is kept constant.
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6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Volume

In the process shown in the figure, the
temperature of an ideal gas rises to 𝑇 + ∆𝑇, and
the pressure rises to 𝑝 + ∆𝑝 while 𝑉 is
unchanged.

The heat 𝑄 added to the gas is related to ∆𝑇 by

𝑄 = 𝑛𝐶𝑉∆𝑇

where 𝐶𝑉 is the molar specific heat at constant
volume.
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6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Volume

Substituting in the first law of thermodynamics
yields

∆𝐸int= 𝑛𝐶𝑉∆𝑇 −𝑊,

Setting 𝑊 = 0 and solving for 𝐶𝑉 we find (for
monatomic ideal gas)

𝐶𝑉 =
∆𝐸int
𝑛∆𝑇

=

3
2
𝑛𝑅∆𝑇

𝑛∆𝑇
=
3

2
𝑅

= 12.5 J/mol ∙ K.
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6. The Molar Specific Heats of an Ideal Gas

21

Molar Specific Heat at Constant Volume

Substituting in the first law of thermodynamics
yields

∆𝐸int= 𝑛𝐶𝑉∆𝑇 −𝑊,

Setting 𝑊 = 0 and solving for 𝐶𝑉 we find (for
monatomic ideal gas)

𝐶𝑉 =
∆𝐸int
𝑛∆𝑇

=

3
2
𝑛𝑅∆𝑇

𝑛∆𝑇
=
3

2
𝑅

= 12.5 J/mol ∙ K.



6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Volume

In diatomic and polyatomic gases, the molecules
can have rotational kinetic energy in addition to
the translational kinetic energy.

According the equipartition of energy theorem,
the internal energy of a gas is

𝐸int = 𝑓
1

2
𝑛𝑅𝑇,

where 𝑓 is the number of degrees of freedom of a
molecule. The corresponding value of 𝐶𝑉 is now

𝐶𝑉 =
𝑓

2
𝑅.
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6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Volume

A monatomic gas molecule has THREE degrees of
freedom (3 translational), and thus

𝐶𝑉 =
3

2
𝑅. monatomic

A diatomic gas molecule has FIVE degrees of
freedom (3 translational + 2 rotational), and thus

𝐶𝑉 =
5

2
𝑅. diatomic

A polyatomic gas molecule has SIX degrees of
freedom (3 translational + 3 rotational), and thus

𝐶𝑉 = 3𝑅. polyatomic
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6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Volume

We can generalize the expression 𝐸int = 3/2 𝑛𝑅𝑇 which is for monatomic ideal
gases to include di- and poly-atomic ideal gases by replacing 3/2 𝑅 with 𝐶𝑉. We
then get

𝐸int = 𝑛𝐶𝑉𝑇.

The change of internal energy ∆𝐸int for any ideal gas, due to a temperature change
∆𝑇 is given by

∆𝐸int= 𝑛𝐶𝑉∆𝑇.

“A change in the internal energy 𝐸int of a confined ideal gas depends on only the
change in the temperature, not on what type of process produces the change.”
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6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Pressure

In the process shown in the figure, the
temperature of an ideal gas rises to 𝑇
+ ∆𝑇, and the volume rises to 𝑉 + ∆𝑉
while 𝑝 is unchanged.

The heat 𝑄 added to the gas is related to
∆𝑇 by

𝑄 = 𝑛𝐶𝑝∆𝑇

where 𝐶𝑝 is the molar specific heat at
constant pressure.
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6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Pressure

𝐶𝑃 is larger than 𝐶𝑉 because now the gas
does work. Substituting in the first law of
thermodynamics gives

∆𝐸int= 𝑛𝐶𝑝∆𝑇 −𝑊 = 𝑛𝐶𝑝∆𝑇 − 𝑝∆𝑉.

From the ideal gas law (𝑝𝑉 = 𝑛𝑅𝑇), 𝑝∆𝑉
= 𝑛𝑅∆𝑇. We then write

∆𝐸int= 𝑛𝐶𝑝∆𝑇 − 𝑛𝑅∆𝑇.

Solving for 𝐶𝑝 gives

𝐶𝑝 =
∆𝐸int
𝑛∆𝑇

+ 𝑅 = 𝐶𝑉 + 𝑅.
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6. The Molar Specific Heats of an Ideal Gas

Gas Degrees of 
Freedom

𝑬𝐢𝐧𝐭

(
𝑓

2
𝑛𝑅𝑇)

𝑪𝑽

(
𝑓

2
𝑅)

𝑪𝒑
(𝑪𝑽 + 𝑹)

Monatomic 3 3

2
𝑛𝑅𝑇

3

2
𝑅

5

2
𝑅

Diatomic 5 5

2
𝑛𝑅𝑇

5

2
𝑅

7

2
𝑅

Polyatomic 6 3𝑛𝑅𝑇 3𝑅 4𝑅
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6. The Molar Specific Heats of an Ideal Gas

5 greatest, then 1, 2, 3 and 4 tie.
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6. The Molar Specific Heats of an Ideal Gas
Example 4: A bubble of 5.00 mol of helium is submerged at a certain depth in
liquid water when the water (and thus the helium) undergoes a temperature
increase ∆𝑇 of 20.0 C° at constant pressure. As a result, the bubble expands. The
helium is monatomic and ideal.

(a) How much energy is added to the helium as heat during the temperature
increase and expansion?

𝑄 = 𝑛𝐶𝑝∆𝑇 = 𝑛
5

2
𝑅 ∆𝑇 = 5.00 mol

5

2
8.31

J

mol ∙ K
20.0C° = 2.08 kJ.

(b) What is the change ∆𝐸int in the internal energy of the helium during the
temperature increase?

∆𝐸int = 𝑛𝐶𝑉∆𝑇 =
3

2
𝑛𝑅∆𝑇 = 5.00 mol

3

2
8.31

J

mol ∙ K
20.0C° = 1.25 kJ.
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6. The Molar Specific Heats of an Ideal Gas

(c) How much work 𝑊 is done by the helium as it expands against the pressure of
the surrounding water during the temperature increase?

𝑊 = 𝑝∆𝑉 = 𝑛𝑅∆𝑇 = 5.00 mol 8.31
J

mol ∙ K
20.0C° = 831 J.

Another way:

𝑊 = 𝑄 − ∆𝐸int = 2.0775 kJ − 1.2465 kJ = 831 J.
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7. The adiabatic Expansion of an Ideal Gas

In adiabatic processes 𝑄 = 0. We can make 𝑄
= 0 by carrying out the process very quickly
or in a well insulated container.

During an adiabatic process

𝑝𝑉𝛾 = a constant,

where 𝛾 = 𝐶𝑝/𝐶𝑉. On the 𝑝-𝑉 diagram, the
process occurs along a line (called an adiabat)
that has the equation 𝑝 = a constant/𝑉𝛾.

When the gas goes from state 𝑖 to state 𝑓

𝑝𝑖𝑉𝑖
𝛾
= 𝑝𝑓𝑉𝑓

𝛾
.
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7. The adiabatic Expansion of an Ideal Gas

Using the ideal gas law, we can write

𝑛𝑅𝑇

𝑉
𝑉𝛾 = a constant,

or

𝑇𝑉𝛾−1 = a constant. (new constant)

When the gas goes from state 𝑖 to state 𝑓,

𝑇𝑖𝑉𝑖
𝛾−1

= 𝑇𝑓𝑉𝑓
𝛾−1
.
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7. The adiabatic Expansion of an Ideal Gas

Free Expansions

A free expansion is an adiabatic process with no work or change in internal energy.

In free expansions the system is in equilibrium only at the initial and final states.

We do not know the state of the gas in between.

Because ∆𝐸int = 0, ∆𝑇 = 0 or

𝑇𝑖 = 𝑇𝑓.

Using 𝑝𝑉 = 𝑛𝑅𝑇 yields

𝑝𝑖𝑉𝑖 = 𝑝𝑓𝑉𝑓 .
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7. The adiabatic Expansion of an Ideal Gas

Example 5: Initially, 1 mol of neon (assumed to be an ideal gas) has temperature 𝑇𝑖
= 310 K and volume 𝑉𝑖 = 12.0 L. We will allow it to expand to volume 𝑉𝑓 = 19.0 L.

(a) What would be the final temperature if the gas expands adiabatically?

The initial and final temperatures and volumes of the gas are related by

𝑇𝑖𝑉𝑖
𝛾−1

= 𝑇𝑓𝑉𝑓
𝛾−1
.

with

𝛾 =
𝐶𝑝

𝐶𝑉
=
5/2 𝑅

3/2 𝑅
= 1.60.

Solving for 𝑇𝑓 and substituting gives

𝑇𝑓 = 𝑇𝑖
𝑉𝑖
𝑉𝑓

𝛾−1

= 310 K
12.0 L

19.0 L

1.60−1

= 235 K.
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7. The adiabatic Expansion of an Ideal Gas

(b) What would be the final temperature and pressure if, instead, the gas expands
freely to the new volume, from an initial pressure of 2.00 Pa?

The temperature does not change in free expansions. We also know that, for a free
expansion

𝑝𝑖𝑉𝑖 = 𝑝𝑓𝑉𝑓 .

The final pressure is therefore

𝑝𝑓 =
𝑝𝑖𝑉𝑖
𝑉𝑓
=
2.00 Pa 12.0 L

19.0 L
= 1.26 Pa.
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7. The adiabatic Expansion of an Ideal Gas

1, 2, then 3.
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𝑄 = ∆𝐸int +𝑊

∆𝐸int = 𝑛𝐶𝑉∆𝑇



7. The adiabatic Expansion of an Ideal Gas
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