Chapter 19

The Kinetic Theory of Gases




1. The Kinetic Theory of Gases

The kinetic theory of gases relates the motion of atoms to the volume, pressure
and temperature of gases.




2. Avogadro’s Number

The mole is one of the seven Sl base units. It is defined as follows:
“One mole is the number of atoms in a 12 g sample of carbon-12."

The number of atoms or molecules in a mole is given (experimentally) by
Avogadro’s number:

N, = 6.022 x 1023 mol™1.

The number of moles n contained in a sample of any substance is equal to the ratio

of the number of molecules N in the sample to the number of molecules N, in
1 mol:

N




2. Avogadro’s Number

The number of moles n is related to the mass of the sample M., and either the
molar mass M (mass of 1 mole) or the molecular mass m (mass of one molecule)
by:

Msam Msam

M mNA ’

n =

where we used that M = mN,.




3. |Ideal Gases

Experimentally, it was found that the pressure p, volume IV and temperature T for
any gas are related by

pV = nRT,
where n is the number of moles of gas and R is the gas constant given by
R =8.31]/mol - K.

This is the ideal gas law. It holds for any gas at low density.




3. |Ideal Gases

We can rewrite the ideal gas law in terms of the Boltzmann constant k, where
R 8.31]/mol - K

N, 6.02 x 1023 mol-1

= 1.38 x 10~ 23 J /K.

We can write nR as

N
Ny

The ldeal gas law can be written as
pV = NkT.




3. |Ideal Gases

Work Done by an Ideal Gas at Constant Temperature

Consider an ideal gas in a piston-cylinder arrangement. Suppose that we allow the
gas to expand from an initial volume V; to a final volume V¢, while we keep the

temperature T constant. Such a process is called an isothermal expansion. The
reverse is an isothermal compression.

On a p-V diagram, an isotherm is a curve that connects points that have the same
temperature. For n moles of an ideal gas, an isotherm is the graph of the equation

1 1
p = (nRT) 7= (cosntant) 7




3. |Ideal Gases

Work Done by an Ideal Gas at Constant Temperature

The figure shows three isotherms. An isothermal
expansion (red curve) is shown too.

The work done by an ideal gas during an isothermal
expansion is

w={ "pav f TRRT v - nRT f v
= p = =N —_—
Vi Vi V Vi V
— nRT[In V]Z{ — nRT ln%.

l

T=320K

~ 7=310K

T=300K




3. |Ideal Gases

\.CHECKPOINT 1 pV = nRT
An 1deal gas has an initial pressure of 3 pV
pressure units and an initial volume of 4 = =

volume units. The table gives the final
pressure and volume of the gas (in
those same units) in five processes.
Which processes start and end on the
same 1sotherm?

a7 h o g a, b, dande.
p |12 6 5 4 1
vii1 2 7 312




3. |Ideal Gases

Example 2: A cylinder contains 12 L of oxygen at 20°C and 15atm. The
temperature is raised to 35°C, and the volume is reduced to 8.5 L. What is the final

pressure of the gas in atmospheres? Assume that the gas is ideal.
The ideal gas law for the initial and final states, respectively, reads
piV; = nRT;,
eV = nRTs.
Dividing the second equation by the first and rearranging give
_ piViTs (15 atm)(12 L)(308 K)

_ — 22 atm.
A (8.5 L)(293 K) R
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3. |Ideal Gases

Example 3: One mole of oxygen (assume it to be
an ideal gas) expands at a constant temperature
T of 310 K from an initial volume V; of 12 L to a
final volume V; of 19 L. How much work is done

by the gas during the expansion?

W = nRT InL
- ] oL
— (100 mOl) (831 mol-K) (310 K) In 12 L
= 1180].
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4. Pressure, Temperature, and RMS Speed

For a set of n values {xq, x5, ..., x,,}, the mean value x (or average value Xavg) IS

_ 1
x=£(x1 + x, + -+ xp).

The root mean square (rms) value x, ¢ is defined as

1
Xrms = E(xlz +X22 T "'+x1%)-

\




4. Pressure, Temperature, and RMS Speed

Example 3: Here are five numbers: 5, 11, 32, 67, and 89.

(a) What is the average value n,, of these numbers?

5+11+ 32+ 67+ 89
navg: 5 =

(b) What is the rms value n,, of these numbers?

52 4+ 112 4 322 4+ 672 + 892 B

n —
avg 5

N

13

= 51.1.




4. Pressure, Temperature,
and RMS Speed

The pressure p exerted by n moles of an ideal
gas is related to the rms speed v, Of the
molecules by

_ nMvfiys
P="3y
where M is the molar mass of the gas. Using
the ideal gas law we write

3RT

vrms - .
\ M
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Some RMS Speeds at Room
Temperature (T = 300 K)~

Molar
Mass
(10_3 VI‘IHS
Gas keg/mol) (m/s)
Hydrogen (H,) 2.02 1920
Helium (He) 4.0 1370
Water vapor
(H,O) 18.0 645
Nitrogen (N,) 28.0 517
Oxygen (O,) 32.0 483
Carbon dioxide
(CO,) 44.0 412
Sulfur dioxide
(SO,) 64.1 342




5. Translational Kinetic Energy

The average translational kinetic energy of a single molecule of an ideal gas is

1 5 1 3RT 3RT 3 M
Kavg=§mvrm5=§m M ZZNAZEkT. EzNA;RszA

At a given temperature T, all ideal gas molecules—no matter what their mass—
: L 3
have the same average translational kinetic energy—namely, > kT.

When we measure the temperature of a gas, we are also measuring the average
translational kinetic energy of its molecules.




5. Translational Kinetic Energy

\' CHECKPOINT 2

A gas mixture consists of molecules of types

I, 2, and 3, with molecular masses m; > 3

m, > ms. Rank the three types according to Kavg = 5 kT

(a) average kinetic energy and (b) rms

speed, greatest first. _ |3RT
vrms _ M

(a) All tie. M = Nym

(b) 3,2 then 1.

16




5. Translational Kinetic Energy

Internal Energy E: ..+

We can assume that the internal energy Ej, of a monatomic ideal gas is the sum of
the translational kinetic energies of its atoms:

3 3 3
Eine = NKavg = 5 NKT = Sn(Nak)T = - nRT.

“The internal energy of an ideal gas is a function of the gas temperature only.”
A temperature change of AT results in a change of internal energy AE;,; given by

3
AEjne = RAT.




6. The Molar Specific Heats of an Ideal Gas

We can now use the expression for Ej,; to derive
an expression for the molar specific heat of an
ideal gas.

Remember that, for a solid or liquid
Q = CAT = ncy o AT.

However, for gases, the heat Q depends on the
details of a process. Thus, we shall derive two
expressions for ¢01:

Pressure

(1) When the volume of the gas is kept constant.

(2) When the pressure of the gas is kept constant.

Volume




6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Volume

In the process shown in the figure, the
temperature of an ideal gas rises to T + AT, and

the pressure rises to p+Ap while V s
unchanged. p+Ap f
The heat () added to the gas is related to AT by o
Q = nCyAT 7 IR
— 1
where Cy, is the molar specific heat at constant ~ | T AT
volume. |y N
i 1
I

Volume




6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Volume

Substituting in the first law of thermodynamics

yields
AE; = nCy AT — W,

Setting W = 0 and solving for C, we find (for

monatomic ideal gas)

3
_AEp 7nRAT B 3R
~ nAT  nAT 2
= 12.5]/mol - K.

Cy

Pressure

Volume

T+AT




6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heats at
Constant Volume

Molar Specific Heat at Constant Volume

Substituting in the first law of thermodynamics
yields

AE, .= nC,AT — W,

Setting W = 0 and solving for C, we find (for
monatomic ideal gas)

3
_AEp 7nRAT B 3R
~ nAT  nAT 2
= 12.5]/mol - K.

Cy

21

Cy
Molecule  Example (J/mol - K)
. Ideal SR =125
Monatomic
5 &
Real He 1“'3_
AT 12.6
. Ideal >R =208
Diatomic
Real N, 20.7
O, 20.8
. Ideal 3R =249
Polyatomic
Real NH, 29.0

CO,

29.7




6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heats at
Constant Volume

Molar Specific Heat at Constant Volume

In diatomic and polyatomic gases, the molecules
can have rotational kinetic energy in addition to
the translational kinetic energy.

According the equipartition of energy theorem,
the internal energy of a gas is

1
Eint = fEnRT'

where f is the number of degrees of freedom of a
molecule. The corresponding value of Cy, is now
f

C, = =R.
2

Cy
Molecule  Example (J/mol - K)
. Ideal SR =12.5
Monatomic
5 &
Real He 1“'3_
AT 12.6
. Ideal >R =208
Diatomic
Real N, 20.7
O, 20.8
. Ideal 3R =249
Polyatomic
Real NH, 29.0

CO, 297




6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heats at
Constant Volume

Molar Specific Heat at Constant Volume

A monatomic gas molecule has THREE degrees of
freedom (3 translational), and thus

Cy = S R. (monatomic)

A diatomic gas molecule has FIVE degrees of
freedom (3 translational + 2 rotational), and thus

Cy = > R. (diatomic)

A polyatomic gas molecule has SIX degrees of
freedom (3 translational + 3 rotational), and thus

Cy = 3R. (polyatomic)

Cy
Molecule  Example (J/mol - K)
. Ideal SR =125
Monatomic
5 &
Real He 1“'3_
AT 12.6
. Ideal >R =208
Diatomic
Real N, 20.7
O, 20.8
. Ideal 3R =249
Polyatomic
Real NH, 29.0
CO, 29.7




6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Volume

We can generalize the expression Ej,+ = 3/2 nRT which is for monatomic ideal
gases to include di- and poly-atomic ideal gases by replacing 3/2 R with Cy,. We
then get

Eint = nCyT.
The change of internal energy AE;,; for any ideal gas, due to a temperature change
AT is given by
AE; = nCy AT.

“A change in the internal energy Ej,; of a confined ideal gas depends on only the
change in the temperature, not on what type of process produces the change.”




6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Pressure

In the process shown in the figure, the
temperature of an ideal gas rises to T
+ AT, and the volume rises to V + AV
while p is unchanged.

The heat Q added to the gas is related to
AT by

Pressure
|
|
|
|
|
|
|
A

Q = nC,AT

|
|
|
. g |
where C, is the molar specific heat at |
constant pressure. 1\! !/V+ AV

Volume




6. The Molar Specific Heats of an Ideal Gas

Molar Specific Heat at Constant Pressure

Cp is larger than Cy, because now the gas
does work. Substituting in the first law of
thermodynamics gives

AEine= nC,AT — W = nC,AT — pAV.

From the ideal gas law (pV = nRT), pAV
= nRAT. We then write

AEjnt= nCy,AT — nRAT.

Solving for C, gives
_ AEint
nAT

Cp +R=CV+R

Pressure

p /
"""" N |
: : T+ AT
| 7 .
: p AV | 7
| 7 7
Volume




6. The Molar Specific Heats of an Ideal Gas

Degrees of
Freedom
2

. 3 3 3 5
Monatomic —nRT —R R

2" 2 2

. . 5 5 5 7
Diatomic —nRT R —R

2" 2 2
Polyatomic 6 3nRT 3R 4R




6. The Molar Specific Heats of an Ideal Gas

“-. CHECKPOINT 4

The figure here shows five paths traversed by a gas on a p-V diagram. Rank the paths
according to the change 1n internal energy of the gas, greatest first.

5 greatest, then 1, 2, 3 and 4 tie.
AE; .= nCyAT

28




6. The Molar Specific Heats of an Ideal Gas

Example 4: A bubble of 5.00 mol of helium is submerged at a certain depth in
liquid water when the water (and thus the helium) undergoes a temperature
increase AT of 20.0 C° at constant pressure. As a result, the bubble expands. The
helium is monatomic and ideal.

(a) How much energy is added to the helium as heat during the temperature
increase and expansion?

J

mol - K

5 5
Q =nC,AT =n (E R) AT = (5.00 mol) ( 8.31 ) (20.0C°) = 2.08 K.

(b) What is the change AEj,; in the internal energy of the helium during the
temperature increase?

J

mol - K

3 3
AEjne = nCyAT =~ nRAT = (5.00 mol) ( 8.31 ) (20.0C°) = 1.25 K.

29




6. The Molar Specific Heats of an Ideal Gas

(c) How much work W is done by the helium as it expands against the pressure of
the surrounding water during the temperature increase?

J

mol - K

W = pAV = nRAT = (5.00 mol) (8.31 ) (20.0C°) = 831].

Another way:
W =Q — AE;,; = 2.0775 k] — 1.2465 k] = 831 J.

30




/. The adiabatic Expansion of an |deal Gas

In adiabatic processes Q = 0. We can make Q
= 0 by carrying out the process very quickly
or in a well insulated container.

During an adiabatic process
pV?Y = a constant,

where y = C,/Cy. On the p-V diagram, the
process occurs along a line (called an adiabat)
that has the equation p = a constant/V".

When the gas goes from state i to state f

iniy = prfy.

Pressure

/Adiabat (Q=0)

?

I

[sotherms:
700 K
500 K
300 K

Volume




/. The adiabatic Expansion of an |deal Gas

Using the ideal gas law, we can write
(nRT

7) V'Y = a constant,

or

TVY~1 = a constant. (new constant)

When the gas goes from state i to state f,

TV ™ =TV

Pressure

/Adiabat (Q=0)

?

I

[sotherms:
700 K
500 K
300 K

Volume




/. The adiabatic Expansion of an |deal Gas

Free Expansions

A free expansion is an adiabatic process with no work or change in internal energy.
In free expansions the system is in equilibrium only at the initial and final states.
We do not know the state of the gas in between.

Because AE;,t = 0, AT =0 or

Using pV = nRT vyields




/. The adiabatic Expansion of an |deal Gas

Example 5: Initially, 1 mol of neon (assumed to be an ideal gas) has temperature T;
= 310 Kand volume V; = 12.0 L. We will allow it to expand to volume V; = 19.0 L.

(a) What would be the final temperature if the gas expands adiabatically?

The initial and final temperatures and volumes of the gas are related by

y-1 _ y—-1
v Tt =Ty

l

with
C, 5/2R
p
—_— . — 1_60_
Y=, T 3/2R

Solving for Tr and substituting gives

v y—1 1201\ 601
T =T, — = (310K) [ —— = 235K.
f Vf

34




/. The adiabatic Expansion of an |deal Gas

(b) What would be the final temperature and pressure if, instead, the gas expands
freely to the new volume, from an initial pressure of 2.00 Pa?

The temperature does not change in free expansions. We also know that, for a free
expansion
piVi = prVr.
The final pressure is therefore
Vi (2.00 Pa)(12.0 L)
AN CTY I

= 1.26 Pa.

35




/. The adiabatic Expansion of an |deal Gas

'\. CHECKPOINT 5

Rank paths 1, 2, and 3 1n Fig. 19-16 according to the energy
transfer to the gas as heat, greatest first.

1, 2, then 3.
N/
Ji 3/ 700 K Q =AEj, + W
500 K
/ 400 K AE;n: = nCy AT

Volume

36




Four Special Processes

Some Special Results

Path in Fig. 19-16  Constant Quantity ProcessType  (AEy,, = O — Wand AE,;,, = nCy AT for all paths)
1 p [sobaric Q=nC,AT:W=pAV
2 I [sothermal Q =W =nRTIn(V;/V}). AEiy =0
3 pV?, TV 1 Adiabatic 0=0, W=—-AE,
4 V [sochoric

Q = AE,, = nCyAT: W=0

37

Pressure

700 K
500 K
400 K

Volume




