


Chapter 17
WAVES II



1. Sound Waves

Sound waves are longitudinal mechanical waves
that can travel through solids, liquids and gases.
We focus in this chapter on sound waves that
travel through air and that are audible to
people.

In the figure, point 𝑆 represents a tiny sound
source, or a point source, that emits sound in all
directions.

Wavefronts are surfaces over which the
oscillations (or displacements) due to the sound
wave have the same value. Wavefronts are
represented by whole or partial circles.



1. Sound Waves

Rays are directed lines perpendicular to the
wavefronts that indicate the direction of travel
of the wavefronts.

The wavefronts in the figure are spheres, and
therefore the waves are said to be spherical.

Far from the source, the wavefronts can be
approximated as planes, and the waves are said
to be planar.



2. The Speed of Sound

The speed of any mechanical wave depends on both an inertial property of the
medium (to store kinetic energy) and an elastic property of the medium (to store
potential energy).

We can thus generalize the equation for the speed of a wave along a string by
writing

𝑣 =
𝜏

𝜇
=

elastic propery

inertial property
.

Because the medium of a sound wave is air, we replace 𝜇 with 𝜌, the density of air.

In a string, the potential energy is associated with the stretching of the string
elements. In air, potential energy is associated with compressions and expansions
of volume elements of the air.



2. The Speed of Sound

The property that determines the extent to which
an element of a medium changes in volume when
the pressure on it changes is the bulk modulus 𝐵:

𝐵 = −
∆𝑝

∆𝑉/𝑉
.

Replacing 𝜏 with 𝐵 yields the expression for the
speed of sound:

𝑣 =
𝐵

𝜌
.



3. Traveling Sound Waves

The oscillations of air elements due to a
traveling sound wave are similar to those of a
string’s elements due to a transverse wave.
However, air elements oscillate longitudinally
rather than transversely.

The displacements 𝑠 𝑥, 𝑡 of air elements are
given by

𝑠 𝑥, 𝑡 = 𝑠𝑚 cos 𝑘𝑥 − 𝜔𝑡 ,

where 𝑠𝑚 is the displacement amplitude.



3. Traveling Sound Waves

The air pressure varies sinusoidally as the
wave moves:

∆𝑝 𝑥, 𝑡 = ∆𝑝𝑚 sin 𝑘𝑥 − 𝜔𝑡 ,

where ∆𝑝𝑚 is the pressure amplitude; the
maximum increase or decrease in pressure. It
is given by

∆𝑝𝑚 = 𝑣𝜌𝜔 𝑠𝑚.

Usually, ∆𝑝𝑚 is very much less than the
pressure where there is no wave.



3. Traveling Sound Waves

Note that negative ∆𝑝 corresponds to an
expansion and positive ∆𝑝 corresponds to
compression.

𝑠 and ∆𝑝 are
𝜋

2
out of phase, as shown in the

figure.



3. Traveling Sound Waves

Example 1: The maximum pressure amplitude ∆𝑝𝑚 that the human ear can tolerate
in loud sounds is about 28 Pa (which is very much less than the normal air pressure
of about 105 Pa). What is the displacement amplitude 𝑠𝑚 for such a sound in air of
density 𝜌 = 1.21 kg/m3, at a frequency of 1000 Hz and a speed of 343 m/s?

We know that ∆𝑝𝑚 = 𝑣𝜌𝜔 𝑠𝑚, which gives

𝑠𝑚 =
∆𝑝𝑚

𝑣𝜌𝜔
=

28 Pa

343 m/s 1.21 kg/m3 2𝜋 1000 Hz
= 1.1 × 10−5 m = 11 μm.



4. Interference

Consider the situation shown in the figure. Two
point sources 𝑆1 and 𝑆2 emit sound waves that are
in phase and of the same wavelength 𝜆. We assume
that the distances 𝐿1 and 𝐿2 are much larger than
that between the sources. Thus we can
approximate the waves at 𝑃 to be in the same
direction.

If 𝐿1 = 𝐿2, the two waves would be in phase at 𝑃
and their interference there would be fully
constructive. However, 𝐿1 is different from 𝐿2 in
general. The phase difference 𝜙 at 𝑃 depends on
the path length difference Δ𝐿 = 𝐿2 − 𝐿1 .



4. Interference

We use the fact that a phase difference of 2𝜋 corresponds to one wavelength.
Thus, we write

𝜙

2𝜋
=

Δ𝐿

𝜆
,

or

𝜙 = 2𝜋
Δ𝐿

𝜆
.

Fully constructive interference occurs when

𝜙 = 2𝜋𝑚 , 𝑚 = 0, 1, 2,…

which corresponds to
Δ𝐿

𝜆
= 0, 1, 2, …



4. Interference

Fully destructive interference occurs when

𝜙 = 𝜋 2𝑚 + 1 𝑚 = 0, 1, 2,…

which corresponds to

Δ𝐿

𝜆
=

1

2
,
3

2
,
5

2
,…

The interference is intermediate for other values of Δ𝐿/𝜆.

𝜙 = 2𝜋
Δ𝐿

𝜆
.



Example 2: In the figure, two point sources 𝑆1
and 𝑆2, which are in phase and separated by
distance 𝐷 = 1.5𝜆, emit identical sound waves
of wavelength 𝜆.

(a) What is the path length difference of the
waves from 𝑆1 and 𝑆2 at point 𝑃1, which lies on
the perpendicular bisector of distance 𝐷, at a
distance greater than 𝐷 from the sources? What
type of interference occurs at 𝑃1?

Δ𝐿 = 0.

The interference is therefore fully constructive.

4. Interference



4. Interference

(b) What are the path length difference and type
of interference at point 𝑃2?

Δ𝐿 = 1.5 𝜆.

The interference is therefore fully destructive.



4. Interference

(c) The figure shows a circle with a radius much
greater than 𝐷 , centered on the midpoint
between sources 𝑆1 and 𝑆2 . What is the
number of points 𝑁 around this circle at which
the interference is fully constructive? (That is,
at how many points do the waves arrive exactly
in phase?)

At point 𝑎, Δ𝐿 = 0. It increases as you go down
along the circle until it becomes 1.5 𝜆 at point
𝑑. Therefore, there is point between 𝑎 and 𝑑 at
which Δ𝐿 = 𝜆 , where a fully constructive
interference occurs.



4. Interference

Thus, there are six points (𝑁 = 6) at which the
interference is fully constructive.



5. Intensity and Sound Level

The intensity 𝐼 of a sound wave at a surface is the
average rate per unit area at which energy is
transferred by the wave through or onto the surface:

𝐼 =
𝑃

𝐴
,

where 𝑃 is the average power (time rate of energy
transfer) of the wave and 𝐴 is the area of the surface
intercepting the sound. The intensity 𝐼 of a sound
wave is given by

𝐼 =
1

2
𝑣𝜌𝜔2𝑠𝑚

2 .



5. Intensity and Sound Level



5. Intensity and Sound Level

Variation of Intensity with Distance

Consider a sound source 𝑆 that emits sound isotropically
(with equal intensity in all directions), as shown in the
figure.

Imagine a sphere of radius 𝑟, centered on the source. All
the energy emitted by the source must pass through the
surface of the sphere.

Therefore, the time rate at which energy is transferred
through the surface must equal the time rate at which
energy is emitted by the source (the power 𝑃𝑠 of the
source) .



5. Intensity and Sound Level

Variation of Intensity with Distance

The intensity 𝐼 at a sphere of radius 𝑟 must then by

𝐼 =
𝑃𝑠

𝐴sphere
=

𝑃𝑠
4𝜋𝑟2

.



5. Intensity and Sound Level

(a) 1 & 2 tie, 3.

(b) 3, 1& 2 tie.

𝐼 =
𝑃𝑠

4𝜋𝑟2

𝑃 = 𝐼𝐴



Example 3: A firecracker, emitting a pulse of sound
that travels radially outward from the explosion center.
The power of this acoustic emission is 𝑃𝑠 = 3.5
× 104 W.

(a) What is the intensity 𝐼 of the sound when it
reaches a distance 𝑟 = 100 m from the firecracker?

𝐼 =
𝑃𝑠

4𝜋𝑟2
=

3.5 × 104 W

4𝜋 100 m 2
= 0.279 W/m2.

5. Intensity and Sound Level



(b) At what time rate 𝑃ℎ𝑒 is sound energy intercepted
by a human ear, aimed at the firecracker and located a
distance 𝑟 = 100 m from the firecracker? The radius
of the human ear canal is 0.35 mm.

𝐴ℎ𝑒 = 𝜋𝑟2 = 𝜋 0.35 × 10−3 m 2 = 3.85 × 10−7 m2.

𝑃ℎ𝑒 = 𝐼𝐴ℎ𝑒 = 0.279 W/m2 3.85 × 10−7 m2

= 1.1 × 10−7 W.

5. Intensity and Sound Level



Example 4: An electric spark jumps along a straight
line of length 𝐿 = 10 m, emitting a pulse of sound that
travels radially outward from the spark. (The spark is
said to be a line source of sound.) The power of this
acoustic emission is 𝑃𝑠 = 1.6 × 104 W.

(a) What is the intensity 𝐼 of the sound when it
reaches a distance 𝑟 = 12 m from the spark?

The radial sound pulse passes through a cylindrical
surface of area 𝐴 = 2𝜋𝑟𝐿. The intensity is then

𝐼 =
𝑃𝑠

2𝜋𝑟𝐿
=

1.6 × 104 W

2𝜋 12 m 10 m
= 21 W/m2.

5. Intensity and Sound Level



(b) At what time rate 𝑃𝑑 is sound energy intercepted
by an acoustic detector of area 𝐴𝑑 = 2.0 cm2, aimed
at the spark and located a distance 𝑟 = 12 m from the
spark?

𝑃𝑑 = 𝐼𝐴𝑑 = 21 W/m2 2.0 × 10−4 m2 = 4.2 mW.

5. Intensity and Sound Level



5. Intensity and Sound Level

The anechoic chamber at
Orfield Laboratories. It holds
the Guinness World Record
for the world's quietest place.

𝛽 = −9.4 dB



5. Intensity and Sound Level

The Decibel Scale

It is much more convenient to speak of sound
level 𝛽 instead of sound intensity 𝐼. The sound
level is defined as

𝛽 = 10 dB log
𝐼

𝐼0
.

Here dB is the abbreviation of decibel and 𝐼0 is
a standard reference intensity (= 10−12 W
/m2), chosen near the lowest limit of human
range of hearing.

𝛽 = 60 dB corresponds to an intensity that is
106 times the standard reference level.



Example 4: If earplugs decreases the sound level of some source by 20 dB, what is
the ratio of the final intensity 𝐼𝑓 of the sound waves to their initial intensity 𝐼𝑖?

𝛽𝑓 − 𝛽𝑖 = 10 dB log
𝐼𝑓
𝐼0

− log
𝐼𝑖
𝐼0

= 10 dB log
𝐼𝑓
𝐼0

𝐼0
𝐼𝑖

= 10 dB log
𝐼𝑓
𝐼𝑖

.

Solving for 𝐼𝑓/𝐼𝑖 we obtain

𝐼𝑓
𝐼𝑖

= 10
𝛽𝑓−𝛽𝑖

10 dB .

Using 𝛽𝑓 − 𝛽𝑖 = −20 dB yields

𝐼𝑓
𝐼𝑖

= 10
−20 dB
10 dB = 10−2.

5. Intensity and Sound Level



6. Sources of Musical Sound

Musical sounds can be set by oscillating strings, membranes, air columns and so on.

We have seen in Ch. 16 that setting up standing waves on a string make it oscillate
with a large sustained amplitude.

We can set up standing sound waves in an air-filled pipe, with one or two open
ends. The waves get reflected at both ends of the pipe, whether closed or open! If
the wavelength is suitably matched to the length of the pipe, the superposition of
the waves in the pipe sets up a standing wave pattern.

The advantage of such a standing wave is that the air in the pipe oscillates with
large, sustained amplitude, emitting sound at any open end at the same frequency
of the standing wave in the pipe.



6. Sources of Musical Sound

Standing waves in a pipe are similar to those
in a string. There is an antinode at an open
end of a pipe and a node at a closed end.

The simplest standing wave pattern (the
fundamental mode or first harmonic), that can
be set in a pipe with two open ends, is shown
in the figure.

The wavelength 𝜆 is twice the pipe’s length 𝐿,
or 𝜆 = 2𝐿.



6. Sources of Musical Sound

The second harmonic requires that 𝜆 = 𝐿. The
third harmonic requires that 𝜆 = 2𝐿/3.

Generally, the resonant frequency for a pipe of
length 𝐿 with two open ends corresponds to
wavelengths

𝜆 =
2𝐿

𝑛
, 𝑛 = 1, 2, 3,…

The corresponding resonant frequencies are

𝑓 =
𝑣

𝜆
= 𝑛

𝑣

2𝐿
, 𝑛 = 1, 2, 3,…



6. Sources of Musical Sound

For a pipe with one open end, there must be
an antinode at the open end and a node at the
closed end.

The simplest standing wave pattern requires
that 𝐿 = 𝜆/4, or 𝜆 = 4𝐿.

The next simplest pattern requires that 𝐿
= 3𝜆/4 or 𝜆 = 4𝐿/3, and so on.



6. Sources of Musical Sound

Generally, the resonant frequency for a pipe
of length 𝐿 with one open end corresponds to
wavelengths

𝜆 =
4𝐿

𝑛
, 𝑛 = 1, 3, 5, … odd n

The corresponding resonant frequencies are

𝑓 =
𝑣

𝜆
= 𝑛

𝑣

4𝐿
, 𝑛 = 1, 3, 5, … odd n



6. Sources of Musical Sound

The second harmonic

𝑓 = 𝑛
𝑣

2𝐿

𝑓𝐴 = 𝑛𝐴
𝑣

2𝐿
; 𝑓𝐴1 =

𝑣

2𝐿

𝑓𝐵 = 𝑛
𝑣

2 2𝐿
= 𝑛𝐵

𝑣

4𝐿
; 𝑓𝐵2 = 2

𝑣

4𝐿
=

𝑣

2𝐿



Example 5: Pipe 𝐴 is open at both ends and has length 𝐿𝐴 = 0.343 m. We want to
place it near three other pipes in which standing waves have been set up, so that
the sound can set up a standing wave in pipe A. Those other three pipes are each
closed at one end and have lengths 𝐿𝐵 = 0.500𝐿𝐴 , 𝐿𝐶 = 0.250𝐿𝐴 , and 𝐿𝐷
= 2.00𝐿𝐴. For each of these three pipes, which of their harmonics can excite a
harmonic in pipe 𝐴? What frequency do you hear from the tube?

Pipe A:

𝑓𝐴 =
𝑛𝐴𝑣

2𝐿𝐴
= 𝑛𝐴

343 m/s

2 0.3430 m
= 𝑛𝐴 500 Hz , 𝑛𝐴 = 1,2,3,…

6. Sources of Musical Sound



Pipe B:

𝑓𝐵 =
𝑛𝐵𝑣

4𝐿𝐵
= 𝑛𝐵

343 m/s

4 0.500𝐿𝐴
= 𝑛𝐵

343 m/s

4 0.500 0.3430 m
= 𝑛𝐵 500 Hz ,

𝑛𝐵 = 1,3,5,…

Thus, 𝑓𝐴 = 𝑓𝐵 for 𝑛𝐴 = 𝑛𝐵, with 𝑛𝐵 = 1,3,5,….

Pipe C:

𝑓𝐶 =
𝑛𝐶𝑣

4𝐿𝐶
= 𝑛𝐶

343 m/s

4 0.250𝐿𝐴
= 𝑛𝐶

343 m/s

4 0.250 0.3430 m
= 𝑛𝐶 1000 Hz ,

𝑛𝐶 = 1,3,5,…

Thus, 𝑓𝐴 = 𝑓𝐶 for 𝑛𝐴 = 2𝑛𝐶, with 𝑛𝐶 = 1,3,5,….

6. Sources of Musical Sound



Pipe D:

𝑓𝐷 =
𝑛𝐷𝑣

4𝐿𝐷
= 𝑛𝐷

343 m/s

4 2𝐿𝐴

= 𝑛𝐷

343 m/s

4 2 0.3430 m

= 𝑛𝐷 125 Hz 𝑛𝐷 = 1,3,5,…

Thus, 𝑓𝐴 = 𝑓𝐷 for 𝑛𝐴 =
1

2
𝑛𝐷, which is not

possible since 𝑛𝐷 is odd.

6. Sources of Musical Sound



Example 6: Weak background noises from a room set up the fundamental standing
wave in a cardboard tube of length 𝐿 = 67.0 cm with two open ends. Assume that
the speed of sound in the air within the tube is 343 m/s.

(a) What frequency do you hear from the tube?

𝑓1 =
𝑣

2𝐿
=

343 m/s

2 0.670 m
= 256 Hz.

(b) If you jam your ear against one end of the tube, what fundamental frequency
do you hear from the tube?

The tube now has one open end. Thus

𝑓1 =
𝑣

4𝐿
=

343 m/s

4 0.670 m
= 128 Hz.

6. Sources of Musical Sound

https://www.youtube.com/watch?v=a3RfULw7aAY

https://www.youtube.com/watch?v=a3RfULw7aAY


6. The Doppler Effect

Consider a source 𝑆 of sound and a detector 𝐷 that are in motion relative to air,
with speeds 𝑣𝑆 and 𝑣𝐷 , respectively. The emitted frequency 𝑓 and detected
frequency 𝑓′ are related by

𝑓′ = 𝑓
𝑣 ± 𝑣𝐷

𝑣 ± 𝑣𝑆
,

where 𝑣 is the speed of sound through air.

Sign Rule:

• When the source or detector moves toward the other, the sign on its speed must
give an upward shift in frequency.

• When the source or detector moves away from the other, the sign on its speed
must give a downward shift in frequency.



6. The Doppler Effect

(a) 𝑓′ = 𝑓
𝑣

𝑣−𝑣𝑆
, greater

(b) 𝑓′ = 𝑓
𝑣

𝑣+𝑣𝑆
, less

(c) 𝑓′ = 𝑓
𝑣−𝑣𝐷

𝑣−𝑣𝑆
, can’t tell

(d) 𝑓′ = 𝑓
𝑣+𝑣𝐷

𝑣+𝑣𝑆
, can’t tell

(e) 𝑓′ = 𝑓
𝑣+𝑣𝐷

𝑣−𝑣𝑆
, greater

(f) 𝑓′ = 𝑓
𝑣−𝑣𝐷

𝑣+𝑣𝑆
, less



Example 5: Bats navigate and search out prey by emitting, and then detecting
reflections of, ultrasonic waves, which are sound waves with frequencies greater
than can be heard by a human. Suppose a bat emits ultrasound at frequency 𝑓𝑏𝑒
= 82.52 kHz while flying with velocity  𝑣𝑏 = 9.00 m/s  i as it chases a moth that
flies with velocity  𝑣𝑚 = 8.00 m/s  i. What frequency 𝑓𝑚𝑑 does the moth detect?

The source (bat) is moving toward the detector (moth). The detector (moth) is
moving away from the source (bat). Thus,

𝑓𝑚𝑑 = 𝑓𝑏𝑒

𝑣 − 𝑣𝐷

𝑣 − 𝑣𝑆
= 82.52 kHz

343 m/s − 8.00 m/s

343 m/s − 9.00 m/s
= 82.8 kHz.

6. The Doppler Effect



What frequency 𝑓𝑏𝑑 does the bat detect in the returning echo from the moth?

The source (moth) is moving away from the detector (bat). The detector (bat) is
moving toward the source (moth). Thus,

𝑓𝑏𝑑 = 𝑓𝑚𝑑

𝑣 + 𝑣𝐷

𝑣 + 𝑣𝑆
= 82.77 kHz

343 m/s + 9.00 m/s

343 m/s + 8.00 m/s
= 83.0 kHz.

6. The Doppler Effect


