
Chapter 16
WAVES I



1. Types of Waves

There are three main types of waves:

1. Mechanical waves: These are the most familiar waves. Examples include water
waves, sound waves and seismic waves. Mechanical waves have two central
features: (1) They are governed by Newton’s laws and (2) they can exist only
within a material medium, such as water, air and rock.

2. Electromagnetic waves: Examples include visible light, infrared light, ultraviolet
light, radio waves, microwaves and x rays. Electromagnetic waves require no
martial medium to exist. They travel through vacuum at the same speed 𝑐
= 299 792 458 m/s.

3. Matter waves: They are associated with subatomic particles, atoms and
molecules. Because these particles constitute matter, such waves are called
matter waves.

https://youtu.be/KVc7oBKzq9U?t=3m49s

https://youtu.be/KVc7oBKzq9U?t=3m49s


2. Transverse and Longitudinal Waves

If you move one end of a stretched wire up and down in
a continuous SHM, a continuous sinusoidal wave travels
along the string at velocity  𝑣.

One way to study such a wave is to monitor the wave
forms (shapes of the waves) as they move to the right.

Another way is to monitor the motion of an element of
the string as the element oscillates up and down while
the wave passes through it.

The displacement of every such oscillating string element
is perpendicular to the direction of travel of the wave.
This motion is called transverse and the wave is called a
transverse wave.



2. Transverse and Longitudinal Waves

As shown in the figure, if you push and pull on the piston
in SHM, a sinusoidal wave travels along the pipe.

The motion of the elements of air is parallel to the
direction of the wave’s travel. The motion is therefore
called longitudinal and the wave is called a longitudinal
wave.

In this chapter we focus on transverse waves. We focus
on longitudinal waves in the next chapter.

Both transverse and longitudinal waves are travelling
waves. Note that it is the wave that travels, not the
material (string or air) through which the wave moves!



2. Transverse and Longitudinal Waves

Transverse Wave Longitudinal Wave



3. Wavelength and Frequency

To completely describe a wave on a string, we need a function that gives the shape
of the wave. We need a relation of the form

𝑦 = ℎ 𝑥, 𝑡 .

𝑦 is the transverse displacement at time 𝑡 of an element of the string at position 𝑥.

In general, a sinusoidal wave can be described with ℎ being either a sine or cosine
function. We choose the sine in this chapter.

We write the displacement 𝑦 of any element of the string as

𝑦 = 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 .

Let us define the quantities in this equation.



3. Wavelength and Frequency

Amplitude and Phase

The amplitude 𝑦𝑚 of a wave is the magnitude of
the maximum displacement of the elements from
their equilibrium position. 𝑦𝑚 is always positive.

The phase of the wave is the argument 𝑘𝑥 − 𝜔𝑡
of the sine. As a wave sweeps through a string
element at position 𝑥, the phase changes linearly
with time.

Thus, the sine also changes, oscillating between
− 1 and +1, with +1 corresponding to a peak of
the wave and −1 corresponding to a valley of the
wave.



3. Wavelength and Frequency

Wavelength and Angular Wave Number

The wavelength 𝜆 of a wave is the distance
between repetitions of the shape of the wave.

At time 𝑡 = 0, for example, the wave shape is
given by

𝑦 𝑥, 0 = 𝑦𝑚 sin 𝑘𝑥 .

The displacement 𝑦 is the same at both ends of a
wavelength, or 𝑦 𝑥1, 0 = 𝑦 𝑥1 + 𝜆, 0 . This gives

𝑦𝑚 sin 𝑘𝑥1 = 𝑦𝑚 sin 𝑘 𝑥1 + 𝜆

= 𝑦𝑚 sin 𝑘𝑥1 + 𝑘𝜆 .



4. Wavelength and Frequency

Wavelength and Angular Wave Number

𝑦𝑚 sin 𝑘𝑥1 = 𝑦𝑚 sin 𝑘 𝑥1 + 𝜆

= 𝑦𝑚 sin 𝑘𝑥1 + 𝑘𝜆 .

This equation is true when 𝑘𝜆 = 2𝜋, or

𝑘 =
2𝜋

𝜆
.

𝑘 is called the angular wave number of the wave.
Its SI unit is rad/m.

𝑘 can be thought of as the number of waves in a
2𝜋 distance.



3. Wavelength and Frequency

Period, Angular Frequency, and Frequency

The element of the string at 𝑥 = 0, for example,
moves up and down in SHM given by

𝑦 0, 𝑡 = 𝑦𝑚 sin −𝜔𝑡

= −𝑦𝑚 sin𝜔𝑡 .

We define the period of oscillation 𝑇 of a wave to
be the time any string element takes to move
through one full oscillation.

The displacement 𝑦 is the same at both ends of a
period, or 𝑦 0, 𝑡1 = 𝑦 0, 𝑡1 + 𝑇 . This gives



3. Wavelength and Frequency

Period, Angular Frequency, and Frequency

−𝑦𝑚 sin𝜔𝑡1 = −𝑦𝑚 sin𝜔 𝑡1 + 𝑇

= −𝑦𝑚 sin 𝜔𝑡1 + 𝜔𝑇 .

This is true when 𝜔𝑇 = 2𝜋, or

𝜔 =
2𝜋

𝑇
.

We call 𝜔 the angular frequency of the wave. Its
SI unit is rad/s.



3. Wavelength and Frequency

Period, Angular Frequency, and Frequency

The frequency 𝑓 of a wave is defined as 1/𝑇:

𝑓 =
1

𝑇
=

𝜔

2𝜋
.

𝑓 is the number of oscillations per unit time. Its SI
unit is 1/s or hertz.

https://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html

https://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html


3. Wavelength and Frequency

(a) 2

(b) 3

(c) 1

𝑦 = 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡

𝜆 =
2𝜋

𝑘



3. Wavelength and Frequency

Phase Constant

Note that at 𝑥 = 0 and 𝑡 = 0, 𝑦 = 𝑦𝑚 sin 0 = 0
and the slope is maximum. We have therefore
considered a special case of sinusoidal travelling
waves.

We can generalize the expression for 𝑦 𝑥, 𝑡 by
inserting a phase constant 𝜙 in the wave
equation:

𝑦 𝑥, 𝑡 = 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 + 𝜙 .

We can choose the value of 𝜙 so that the
function gives some other displacement and
slope at 𝑥 = 0 and 𝑡 = 0.



4. The Speed of a Traveling Wave

The figure shows a wave at two times, ∆𝑡 apart.
The entire wave moved a distance ∆𝑥. The wave
speed 𝑣 is the ratio ∆𝑥/∆𝑡 (or 𝑑𝑥/𝑑𝑡).

Each point on the wave form (e.g. 𝐴), retains its
displacement 𝑦 as the wave moves. For point 𝐴 to
retain its displacement 𝑦, the phase must remain
constant:

𝑘𝑥 − 𝜔𝑡 = constant.



4. The Speed of a Traveling Wave

Differentiating with respect to time gives

𝑘
𝑑𝑥

𝑑𝑡
− 𝜔 = 0,

or
𝑑𝑥

𝑑𝑡
= 𝑣 =

𝜔

𝑘
.

Using 𝑘 = 2𝜋/𝜆 and 𝜔 = 2𝜋/𝑇, we can write 𝑣
as

𝑣 =
𝜔

𝑘
=

𝜆

𝑇
= 𝜆𝑓.



4. The Speed of a Traveling Wave

We can write the equation for a wave traveling in the opposite direction by
replacing 𝑡 with −𝑡 in the phase to obtain

𝑘𝑥 + 𝜔𝑡 = constant.

The equation for a wave traveling in the negative 𝑥 direction is therefore

𝑦 𝑥, 𝑡 = 𝑦𝑚 sin 𝑘𝑥 + 𝜔𝑡 + 𝜙 .

In general, a traveling wave of arbitrary shape is given by

𝑦 𝑥, 𝑡 = ℎ 𝑘𝑥 ± 𝜔𝑡 ,

where ℎ can be any function. ℎ represents a traveling wave since 𝑥 and 𝑡 enter ℎ
into the combination 𝑘𝑥 ± 𝜔𝑡.



4. The Speed of a Traveling Wave

(a) 2, 3, 1

(b) 3, 1 and 2 tie.

𝑣 =
𝜔

𝑘

𝑦 𝑥, 𝑡 = 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 + 𝜙

𝑢 𝑥, 𝑡 =
𝜕𝑦

𝜕𝑡
= −𝑦𝑚𝜔 cos 𝑘𝑥 − 𝜔𝑡 + 𝜙

𝑢 𝑥, 𝑡 = −𝑢𝑚 cos 𝑘𝑥 − 𝜔𝑡 + 𝜙

𝑢𝑚 = 𝑦𝑚𝜔



4. The Speed of a Traveling Wave

Example 1: A wave traveling along a string is described by

𝑦 𝑥, 𝑡 = 0.00327 sin 72.1𝑥 − 2.72𝑡 ,

in which the numerical constants are in SI units (0.00327 m, 72.1 rad/m, and 2.72
rad/s).

(a) What is the amplitude of this wave?

Comparison with the general wave equation

𝑦 = 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 + 𝜙 ,

reveals that 𝑦𝑚 = 0.00327 m.

(b) What are the wavelength, period, and frequency of this wave?



4. The Speed of a Traveling Wave

By comparing with the general wave equation we see that 𝑘 = 72.1 rad/m, and 𝜔
= 2.72 rad/s.

The wavelength 𝜆 is related to 𝑘 by

𝜆 =
2𝜋

𝑘
=

2𝜋

72.1 rad/m
= 0.0871 m = 8.71 cm.

The period 𝑇 is related to 𝜔 by

𝑇 =
2𝜋

𝜔
=

2𝜋

2.72 rad/s
= 2.31 s.

The frequency is then

𝑓 =
1

𝑇
=

1

2.31 s
= 0.433 Hz.



4. The Speed of a Traveling Wave

(c) What is the speed of this wave?

𝑣 =
𝜔

𝑘
=

2.72 rad/s

72.1 rad/m
= 0.0377

m

s
= 3.77

cm

s
.

(d) What is the displacement 𝑦 of the string at 𝑥 = 22.5 cm and 𝑡 = 18.9 s?

𝑦 0.225,18.9 = 0.00327 sin 72.1 × 0.225 − 2.72 × 18.9 = 0.00192 m

= 1.92 mm.

(e) What is 𝑢, the transverse velocity of the string’s element at 𝑥 = 22.5 cm and 𝑡
= 18.9 s?

In general,

𝑢 𝑥, 𝑡 =
𝜕𝑦

𝜕𝑡
= −𝑦𝑚𝜔 cos 𝑘𝑥 − 𝜔𝑡 + 𝜙 .



4. The Speed of a Traveling Wave

For our particular problem,

𝑢 𝑥, 𝑡 = − 0.00327 2.72 cos 72.1𝑥 − 2.72𝑡

= −0.00889 cos 72.1𝑥 − 2.72𝑡 ,

and

𝑢 0.225,18.9 = −0.00889 cos 72.1 × 0.225 − 2.72 × 18.9

= 0.00720 m/s = 7.20 mm/s.

(f) What is the transverse acceleration 𝑎𝑦 of the same element at that time?

In general,

𝑎𝑦 𝑥, 𝑡 =
𝜕𝑢

𝜕𝑡
= −𝑦𝑚𝜔2 sin 𝑘𝑥 − 𝜔𝑡 + 𝜙 = −𝜔2𝑦 𝑥, 𝑡 .



4. The Speed of a Traveling Wave

Therefore,

𝑎𝑦 0.225,18.9 = − 2.72 2𝑦 0.225,18.9 = −0.0142
m

s2
= −14.2

mm

s2
.



5. Wave Speed on a Stretched String

The speed of a wave is set by the properties of the medium. When a wave travels
through a medium, it causes the particles of that medium to oscillate. This
oscillation requires both mass (for kinetic energy) and elasticity (for potential
energy). Thus, the mass and elasticity of a medium determine the speed of a wave
traveling though that medium.

Wave Speed Using dimensional analysis

For the mass, we use the linear density 𝜇 of a string which is the ratio of the
string’s mass 𝑚 to the string’s length 𝑙 (or 𝜇 = 𝑚/𝑙). 𝜇 has the dimension of 𝑀/𝐿.

We can associate the tension 𝜏 in a string with the stretching (elasticity) of the
string. The tension has the dimension of 𝑀𝐿/𝑇2.

The combination of 𝜏 and 𝜇 that has the dimension of speed (𝐿/𝑇) is 𝜏/𝜇.



5. Wave Speed on a Stretched String

Therefore, the velocity has the form 𝑣 = 𝑐 𝜏/𝜇, where 𝑐 is a constant. We can
show that 𝑐 = 1 (See your text). The speed 𝑣 of the wave is then

𝑣 =
𝜏

𝜇
.

The speed of a wave along a stretched ideal string depends only on the tension and
linear density of the string and not on the frequency of the wave.

The frequency of the wave is fixed entirely by whatever generates the wave. The
wavelength is then fixed by 𝜆 = 𝑣/𝑓.



5. The Speed of a Traveling Wave

(a) Same.

(b) Decreases.

(c) Increases.

(d) Increases.

𝑣 = 𝜏/𝜇

𝜆 = 𝑣/𝑓



6. Energy and Power of a Wave Traveling _---
__Along A String
When we generate a wave on a stretched string, we provide energy for the motion
of the string. As the wave moves away, it transports that energy as both kinetic
energy and potential energy.

Kinetic Energy

A string element of mass 𝑑𝑚, oscillating transversely in SHM has kinetic energy
associated with its transverse velocity 𝑢. When the element is at 𝑦 = 0 its speed
(and hence its kinetic energy) is maximum. When the element is at one of its
extreme points 𝑦 = ± 𝑦𝑚, its speed (and hence its kinetic energy) is zero.



6. Energy and Power of a Wave Traveling __ 
__Along A String
Elastic Potential Energy

For a sine wave to travel along a straight string, the
wave must stretch the string. To fit the wave form, a
string element of length 𝑑𝑥 increases and decreases
in a periodic way as it oscillates transversely.

When the element is at 𝑦 = 𝑦𝑚, it has its normal
undisturbed length and its elastic potential energy is
zero. When the element is at 𝑦 = 0, it has maximum
stretch and thus maximum potential energy.



6. Energy and Power of a Wave Traveling __ 
__Along A String
Energy Transport

The regions of the string at 𝑦 = 𝑦𝑚 have zero energy (K.E. + P.E.), and the regions at
𝑦 = 0 have maximum energy. As the wave travels along the string, forces due to
the tension in the string continuously do work to transfer energy from regions with
energy to regions with no energy.

Suppose that we generate a continuous wave on a stretched string. We
continuously provide energy to the string. As the wave moves into sections that
were previously at rest, energy is transferred into those new sections. Thus, the
wave transports the energy along the string.



6. Energy and Power of a Wave Traveling __ 
__Along A String
The Rate of Energy Transmission

The average power, or the average rate at which energy is transmitted by the
wave, is

𝑃𝑎𝑣𝑔 =
1

2
𝜇𝑣𝜔2𝑦𝑚

2 .

The dependence of 𝑃𝑎𝑣𝑔 on 𝜔2𝑦𝑚
2 is true for all types of waves.



6. Energy and Power of a Wave Traveling __ 
__Along A String
Example 2: A string has linear density 𝜇 = 525 g/m and is under tension 𝜏 = 45 N.
We send a sinusoidal wave with frequency 𝑓 = 120 Hz and amplitude 𝑦𝑚
= 8.5 mm along the string. At what average rate does the wave transport energy?

To calculate 𝑃𝑎𝑣𝑔, we need to calculate 𝜔 and 𝑣 first.

𝜔 = 2𝜋𝑓 = 2𝜋 120 Hz = 754
rad

s
.

𝑣 =
𝜏

𝜇
=

45 N

0.525 kg/m
= 9.26

m

s
.

The average energy transport rate is then

𝑃𝑎𝑣𝑔 =
1

2
𝜇𝑣𝜔2𝑦𝑚

2 =
1

2
0.525

kg

m
9.26

m

s
754

rad

s

2

0.0085 m 2 ≈ 100 W.



7. The Principle of Superposition for Waves

Suppose that two waves travel simultaneously
along the same string. The transverse
displacements of the string due to each wave alone
are 𝑦1(𝑥, 𝑡) and 𝑦2(𝑥, 𝑡) , respectively. The
displacement of the string when both waves
overlap is

𝑦′ 𝑥, 𝑡 = 𝑦1 𝑥, 𝑡 + 𝑦2 𝑥, 𝑡 .

Overlapping waves algebraically add to produce a
resultant wave or net wave.

Overlapping waves do not affect the travel of each
other. That is, every wave travels as if there were no
other waves.



8. Interference of Waves

Suppose we send two sinusoidal waves of the same wavelength and amplitude in
the same direction along a stretched string. The resultant wave depends on the
phase difference of the two waves. If the waves are exactly in phase (peaks and
valleys of the two waves are aligned), they combine to double the displacement of
either wave alone. If the waves are exactly out of phase (peaks of one are aligned
with valleys of the other), they combine to cancel out.

This phenomenon of combining waves is called interference.

Let one wave be given by

𝑦1 𝑥, 𝑡 = 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 ,

and another wave, shifted from the first, be given by

𝑦2 𝑥, 𝑡 = 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 + 𝜙 .



8. Interference of Waves

These waves are said to be out of phase by 𝜙 or to have phase difference of 𝜙.

From the superposition principle, the resultant wave is

𝑦′ 𝑥, 𝑡 = 𝑦1 𝑥, 𝑡 + 𝑦2 𝑥, 𝑡 .

= 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 + 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 + 𝜙 .

Using the identity

sin 𝛼 + sin 𝛽 = 2 sin
1

2
(𝛼 + 𝛽) co𝑠

1

2
(𝛼 − 𝛽) ,

the resultant wave can be recast as

𝑦′ 𝑥, 𝑡 = 2𝑦𝑚 cos
1

2
𝜙 sin 𝑘𝑥 − 𝜔𝑡 +

1

2
𝜙 .



8. Interference of Waves

Two sinusoidal waves of the same amplitude
and wavelength, traveling in the same
direction along a string interfere to produce
a resultant sinusoidal wave traveling in the
same direction.

The resultant wave differs from the
interfering waves in two respects:

(1) Its phase 𝜙′ is
1

2
𝜙.

(2) Its amplitude 𝑦𝑚
′ is

𝑦𝑚
′ = 2𝑦𝑚 cos

1

2
𝜙 .



8. Interference of Waves

When 𝜙 = 0, the interfering waves are exactly in phase and 𝑦𝑚
′ = 2𝑦𝑚 cos

1

2
0

= 2𝑦𝑚. Thus,

𝑦′ 𝑥, 𝑡 = 2𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 .

The amplitude of the resultant wave is twice the amplitude of either interfering
wave. The interference produces the greatest possible amplitude and thus called
fully constructive interference.

When 𝜙 = 𝜋 rad (180°), the interfering waves are exactly out of phase and 𝑦𝑚
′

= 2𝑦𝑚 cos
1

2
𝜋 = 0. Thus,

𝑦′ 𝑥, 𝑡 = 0.

The interference eliminates the motion of the string and thus called fully
destructive interference.



8. Interference of Waves

When the interference is neither fully constructive nor fully destructive, it is called
intermediate interference. In this case, 𝑦𝑚

′ is between 0 and 2𝑦𝑚. For example,

when 𝜙 =
2

3
𝜋 (or 120°), 𝑦𝑚

′ = 2𝑦𝑚 cos
𝜋

3
= 𝑦𝑚.



8. Interference of Waves



8. Interference of Waves

Phase differences can be described in terms of wavelengths as well as angles. For
example, phase differences of 1 wavelength corresponds to 𝜙 = 2𝜋 (360°) and
phase difference of 0.5 wavelengths corresponds to 𝜙 = 𝜋 (180°).



8. Interference of Waves

0.20 and 0.80 tie, 0.60, 0.45.

cos
1

2
2𝜋 0.20 = 0.81

cos
1

2
2𝜋 0.80 = 0.81

cos
1

2
2𝜋 0.45 = 0.16

cos
1

2
2𝜋 0.60 = 0.31

𝑦𝑚
′ = 2𝑦𝑚 cos

1

2
𝜙



8. Interference of Waves

Example 3: Two identical sinusoidal waves, moving in the same direction along a
stretched string, interfere with each other. The amplitude 𝑦𝑚 of each wave is
9.8 mm, and the phase difference 𝜙 between them is 100°.

(a) What is the amplitude 𝑦𝑚
′ of the resultant wave due to the interference, and

what is the type of this interference?

𝑦𝑚
′ = 2𝑦𝑚 cos

1

2
𝜙 = 2 9.8 mm cos

100°

2
= 13 mm.

The interference is intermediate.



8. Interference of Waves

(b) What phase difference, in radians and wavelengths, will give the resultant wave
an amplitude of 4.9 mm?

𝜙 = 2 cos−1
𝑦𝑚

′

2𝑦𝑚
= 2 cos−1

4.9

2 9.8
= ±2.6 rad.

There are two solutions because we can obtain the same resultant wave by letting
the first wave lead (travel ahead of) or lag (travel behind) the second wave by
2.6 rad.

The phase difference in wavelengths is

𝜙 = ±2.6 rad ×
1 wavelength

2𝜋 rad
= ±0.42 wavelengths.



9. Standing Waves

What if the two interfering waves are traveling in opposite directions?



9. Standing Waves

What if the two interfering waves are traveling in opposite directions?



9. Standing Waves

There are places along the string, called nodes, where the string never moves.

Halfway between adjacent nodes are antinodes, where the amplitude of the
resultant wave is maximum.

The resultant wave does not move left or right and thus called a standing wave.

Generally, if two sinusoidal waves of the same amplitude and wavelength travel in
opposite directions along a string, their interference produces a standing wave.

Let the two interfering waves be represented by

𝑦1 𝑥, 𝑡 = 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 ,

and

𝑦2 𝑥, 𝑡 = 𝑦𝑚 sin 𝑘𝑥 + 𝜔𝑡 .



9. Standing Waves

The resultant wave is then

𝑦′ 𝑥, 𝑡 = 𝑦1 𝑥, 𝑡 + 𝑦2 𝑥, 𝑡

= 𝑦𝑚 sin 𝑘𝑥 − 𝜔𝑡 + 𝑦𝑚 sin 𝑘𝑥 + 𝜔𝑡 .

Using the identity

sin 𝛼 + sin 𝛽 = 2 sin
1

2
(𝛼 + 𝛽) co𝑠

1

2
(𝛼 − 𝛽) ,

we obtain

𝑦′ 𝑥, 𝑡 = 2𝑦𝑚 sin 𝑘𝑥 cos 𝜔𝑡 .

This equation does not describe a traveling wave
because it is not of the form 𝑦 = ℎ 𝑘𝑥 ± 𝜔𝑡 .
Instead it describes a standing wave.



9. Standing Waves

The quantity 2𝑦𝑚 sin 𝑘𝑥 can be viewed as the amplitude of oscillation of a string
element at position 𝑥.

Unlike the case of traveling waves, the amplitude of a standing wave varies with
position.

The amplitude is zero for values of 𝑘𝑥 that give sin 𝑘𝑥 = 0. These values are given
by

𝑘𝑥 = 𝑛𝜋, 𝑛 = 0, 1, 2,…

Using 𝑘 = 2𝜋/𝜆 and rearranging we find

𝑥 = 𝑛
𝜆

2
, 𝑛 = 0, 1, 2, …

These are the positions of zero amplitude (the nodes) for the standing wave. They
are separated by 𝜆/2.



9. Standing Waves

The amplitude of the standing wave has a maximum value of 2𝑦𝑚, which occurs
when sin 𝑘𝑥 = 1. This is true when

𝑘𝑥 =
1

2
𝜋,

3

2
𝜋,

5

2
𝜋,…

= 𝑛 +
1

2
𝜋, 𝑛 = 0, 1, 2,…

Using 𝑘 = 2𝜋/𝜆 and rearranging, we find

𝑥 =
𝜆

4
+ 𝑛

𝜆

2
, 𝑛 = 0, 1, 2, …

These are the positions of maximum amplitude (the antinodes) of the standing
wave. They are separated by 𝜆/2 and are located halfway between pairs of nodes.



9. Standing Waves

Reflection at a Boundary

We can set up a standing wave in a stretched
string by letting a traveling wave get reflected
at the far end of the string.

If the far end of the string is fixed, a node exits
at the support point. The reflected and
incident waves have the same amplitude but
opposite signs. We refer to this case as hard
reflection.



9. Standing Waves

Reflection at a Boundary

If the far end is free to move along the
transverse direction, an antinode occurs at the
free end. The incident and reflect waves have
the same amplitude and signs. We refer to this
case as soft reflection.



9. Standing Waves

(a) 1

(b) 3

(c) 2

https://www.youtube.com/watch?v=wvJAgrUBF4w

https://www.youtube.com/watch?v=wvJAgrUBF4w


10. Standing Waves and Resonance

Consider a string that is stretched between two clamps. Suppose that we send a
continuous sinusoidal wave along the string.

The wave gets reflected as it reaches one of the clamps and starts traveling in the
other direction, interfering with the incident wave. The same process occurs
repeatedly at both ends of the system.

For certain frequencies, the interference produces a standing wave pattern (or
oscillation mode) with nodes and large antinodes. Such standing waves are said to
be produced at resonance, and the string is said to resonate at these special
frequencies, called resonant frequencies.

At other frequencies, the interference produces only small oscillations.



10. Standing Waves and Resonance

Let the clamps be separated by a distance 𝐿. To find an
expression for resonant frequencies we use the fact
that nodes must exist at the two ends of the string.

The simplest pattern that meets this requirement is
shown in Fig. (a), where there is one antinode at the
center of the string. For this pattern 𝐿 = 𝜆/2 or 𝜆
= 2𝐿.

The second and third simplest patterns are shown in
Figs. (b) and (c), respectively.



10. Standing Waves and Resonance

Generally, a standing wave can be set up on a string of
length 𝐿 by a wave of wavelength equal to

𝜆 =
2𝐿

𝑛
, 𝑛 = 1, 2, 3…

Using 𝜆 = 𝑣/𝑓 , the resonant frequencies that
correspond to these wavelengths are

𝑓 =
𝑣

𝜆
= 𝑛

𝑣

2𝐿
, 𝑛 = 1, 2, 3…



10. Standing Waves and Resonance

The resonant frequencies are integer multiples of the
lowest resonant frequency, 𝑓1 =

𝑣

2𝐿
(𝑛 = 1) . This

frequency is called the fundamental mode or the first
harmonic.

The second harmonic mode corresponds to 𝑛 = 2, and
so on. The collection of all possible oscillations modes
is called the harmonic series and 𝑛 is called the
harmonic number of the 𝑛th harmonic.



10. Standing Waves and Resonance

(a) 75 Hz.

(b) 𝑓7 = 7𝑓1 = 7 75 Hz = 525 Hz. 𝑓1 =
𝑣

2𝐿

𝑓𝑛 = 𝑛𝑓1



10. Standing Waves and Resonance

Example 4: The figure shows a pattern of
resonant oscillation of a string of mass 𝑚
= 2.500 g and length 𝐿 = 0.800 m and that
is under tension 𝜏 = 325.0 N.

(a) What is the wavelength 𝜆 of the
transverse waves producing the standing-
wave pattern.

From the figure we can see that 𝐿 = 2𝜆.
Therefore,

𝜆 =
𝐿

2
=

0.800 m

2
= 0.400 m.



10. Standing Waves and Resonance

(b) What is the harmonic number 𝑛?

By counting the number of loops (or half-
wavelengths), we see that the harmonic number
is

𝑛 = 4.

We get the same answer by comparing the
expressions 𝜆 = 𝐿/2 and 𝜆 = 2𝐿/𝑛.

(c) What is the frequency 𝑓 of the transverse
waves and of the oscillations of the moving
string elements?

𝜇 =
𝑚

𝐿
=

2.500 × 10−3kg

0.800 m
= 3.125 × 10−3

kg

m
.



10. Standing Waves and Resonance

𝑣 =
𝜏

𝜇

1/2

=
325.0 N

3.125 × 10−3 kg
m

1/2

= 322.5
m

s
.

𝑓 =
𝑣

𝜆
=

322.5 m/s

0.400 m
= 806 Hz.

(d) What is the maximum magnitude of the
transverse velocity 𝑢𝑚 of the element
oscillating at coordinate 𝑥 = 0.180 m?

𝑢 𝑥, 𝑡 =
𝜕𝑦′

𝜕𝑡
=

𝜕

𝜕𝑡
2𝑦𝑚 sin 𝑘𝑥 cos𝜔𝑡 .



10. Standing Waves and Resonance

𝑢 𝑥, 𝑡 = −2𝑦𝑚𝜔 sin 𝑘𝑥 sin𝜔𝑡 .

The maximum transverse speed is then

𝑢𝑚 𝑥 = −2𝑦𝑚𝜔 sin 𝑘𝑥 .

At 𝑥 = 0.180 m,

𝑢𝑚 0.180 m = −2 0.00200 m 2𝜋 806.2 Hz sin
2𝜋

0.400 𝑚
0.180 m

= 6.26
m

s
.

At what point during the element’s oscillation is the transverse velocity maximum?

The transverse velocity is maximum then the element is at y = 0.


