
Chapter 14
FLUIDS
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1. What is a Fluid?

• A fluid is a substance that can flow.

• Fluids conform to the boundaries of any container in which we put them.
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2. Density and Pressure

• When we discuss rigid bodies, we found that the physical quantities of mass
and force are useful for studying such bodies.

• In the case of fluids, it is more useful to speak of density and pressure.

• Density:

The density 𝜌 of a fluid at any point is the ratio of the mass ∆𝑚 of an isolated
volume element ∆𝑉 around that point to the volume element ∆𝑉:

𝜌 =
∆𝑚

∆𝑉
.

3



2. Density and Pressure

A fluid sample is large relative to atomic dimensions. We then write

𝜌 =
𝑚

𝑉
.

where 𝑚 and 𝑉 are the sample’s volume and mass, respectively.

Density is a scalar quantity. Its SI unit is kg/m2.

The density of a gas depends largely on the pressure, unlike liquids. That is
because gasses are readily compressible, unlike liquids.
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2. Density and Pressure

• Pressure:

Consider the small pressure sensor in the figure. The fluid
exerts a force ∆𝐹 normal to the piston of surface area ∆𝐴.
The pressure on the piston is defined as

𝑃 =
∆𝐹

∆𝐴
.

If the force is uniform over a flat area 𝐴, we can write

𝑃 =
𝐹

𝐴
,

where 𝐹 is the magnitude of the normal force on area 𝐴.
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2. Density and Pressure

• Pressure:

Pressure is a scalar quantity. The expression for pressure
includes the magnitude of the force!

The SI unit of pressure is N/m2, which is given the special
name pascal (Pa).

Another common unit is atmosphere (atm), the approximate
average pressure of the atmospheric pressure at sea level,
given as

1 atm = 1.01 × 105Pa = 760 torr mm Hg .
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2. Density and Pressure

Example 1: A living room has floor dimensions of 3.5 m and 4.2 m and a height of
2.4 m.

(a) What does the air in the room weigh when the air pressure is 1.0 atm?

𝑚𝑔 = 𝜌𝑉 𝑔

= 1.21 kg/m3 3.5 m × 4.2m × 2.4 m 9.8 m/s2

≈ 420 N.

(b) What is the magnitude of the atmosphere’s downward force on the top of your
head, which we take to have an area of 0.040 m2?

𝐹 = 𝑝𝐴 = 1 atm ×
1.01 × 105 N/m2

1 atm
0.040 m2 = 4.0 × 103 N.
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3. Fluids at Rest

• The pressures due to fluids that are static (at
rest) are usually called hydrostatic pressures.

• Here we want to find an expression for
hydrostatic pressure as a function of depth or
altitude.

• Consider an imaginary cylinder of water with
base area 𝐴 and 𝑦1 and 𝑦2 are the heights of
its two faces.

• The water sample is in static equilibrium; it is
stationary and the forces on it balance.
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3. Fluids at Rest

• The balance of these forces is written as

𝐹2 = 𝐹1 +𝑚𝑔.

• We then use that 𝐹1 = 𝑝1𝐴, 𝐹2 = 𝑝2𝐴 and 𝑚
= 𝜌𝑉 = 𝜌𝐴 𝑦1 − 𝑦2 and write

𝑝2 = 𝑝1 + 𝜌𝑔 𝑦1 − 𝑦2 .

• This equation can be used to find pressure both
in a liquid as a function of depth, and in the
atmosphere as a function of altitude or height.
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3. Fluids at Rest

• To find pressure 𝑝 in a liquid as a function of
depth, we use set 𝑦1 = 0, 𝑝1 = 𝑝0, 𝑦2 = −ℎ,
and 𝑝2 = 𝑝 in the previous equation, which
then becomes

𝑝 = 𝑝0 + 𝜌𝑔ℎ.

• The pressure at a point in a fluid in static
equilibrium depends on the depth of that point
but not on any horizontal dimension of the fluid
or its container.
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3. Fluids at Rest

• 𝑝 is said to be the total pressure, or absolute
pressure. The difference between an absolute
pressure 𝑝 − 𝑝0 = 𝜌𝑔ℎ and an atmospheric
pressure is called the gauge pressure.

• To find pressure 𝑝 in the atmosphere as a
function of altitude or height we set 𝑦1 = 0, 𝑝1
= 𝑝0, 𝑦2 = 𝑑, and 𝑝2 = 𝑝 to get

𝑝 = 𝑝0 − 𝜌air 𝑔𝑑.
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3. Fluids at Rest

12

All tie



3. Fluids at Rest

Example 2: A novice scuba diver practicing in a swimming pool takes enough air
from his tank to fully expand his lungs before abandoning the tank at depth L and
swimming to the surface. He ignores instructions and fails to exhale during his
ascent. When he reaches the surface, the difference between the external pressure
on him and the air pressure in his lungs is 9.3 kPa. From what depth does he start?
What potentially lethal danger does he face?

Using

𝑝 = 𝑝0 + 𝜌𝑔ℎ,

we can relate ∆𝑝 = 𝑝 − 𝑝0 to ℎ. Solving for ℎ and substituting

ℎ =
∆𝑝

𝜌𝑔
=

9300 Pa

998
kg
m3 9.8

m
s2

= 0.95 m.
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3. Fluids at Rest

Example 3: The U-tube in the figure contains two
liquids in static equilibrium: Water of density 𝜌w
= 998 kg/m3 is in the right arm, and oil of unknown
density 𝜌x is in the left. Measurement gives 𝑙
= 135 mm and 𝑑 = 12.3 mm. What is the density of
the oil?

Both fluid columns produce the same pressure 𝑝int at
the level of the interface. We therefore write

𝑝int = 𝑝0 + 𝜌w𝑔𝑙 (right arm),

and
𝑝int = 𝑝0 + 𝜌x𝑔 𝑙 + 𝑑 (left arm),
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3. Fluids at Rest

Solving for 𝑑 we find that

𝜌x = 𝜌w
𝑙

𝑙 + 𝑑
= 998 kg/m3

135 mm

135 mm+ 12.3 mm

= 915
kg

m3
.
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4. Measuring Pressure

• The Mercury Barometer

The figure shows a very basic mercury barometer. We
can find the atmospheric pressure 𝑝0 in terms of the
height ℎ of the mercury column. Substituting

𝑦1 = 0,  𝑝1 = 𝑝0 and  𝑦2 = ℎ,  𝑝2 = 0,

into the equation 𝑝2 = 𝑝1 + 𝜌𝑔 𝑦1 − 𝑦2 , gives that 

𝑝0 = 𝜌𝑔ℎ,

where 𝜌 is the density of mercury.

Note that the height of the mercury column depends on 
𝑔 (which depends on location) and 𝜌 (which depends of 
temperature).
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4. Measuring Pressure

• The Open-Tube Manometer

The figure shows an open-tube manometer. We can find
the gauge pressure 𝑝𝑔 in terms of the height ℎ. We
substitute

𝑦1 = 0,  𝑝1 = 𝑝0 and  𝑦2 = −ℎ,  𝑝2 = 𝑝,

into the equation 𝑝2 = 𝑝1 + 𝜌𝑔 𝑦1 − 𝑦2 and get

𝑝 = 𝑝0 + 𝜌𝑔ℎ,

or 𝑝𝑔 = 𝑝 − 𝑝0 = 𝜌𝑔ℎ,

where 𝜌 is the density of the liquid in the tube.
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4. Measuring Pressure

• The Open-Tube Manometer

𝑝𝑔 can be positive or negative, depending on whether 𝑝
> 𝑝0 or 𝑝 < 𝑝0.

For example, 𝑝𝑔 is positive in a tire and negative in a
light bulb.
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5. Pascal's Principle

• Pascal stated that: A change in the pressure applied to an
enclosed incompressible fluid is transmitted undiminished
to every portion of the fluid and to the walls of its
container.

• Demonstrating Pascal’s Principle

Consider the system in the figure. The atmosphere,
container, and shot exert pressure 𝑝𝑒𝑥𝑡 on the piston and
the liquid. The pressure 𝑝 at any point 𝑃 in the liquid is

𝑝 = 𝑝𝑒𝑥𝑡 + 𝜌ℎ𝑔.
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5. Pascal's Principle

• Demonstrating Pascal’s Principle

If you add more lead shot to the container 𝑝𝑒𝑥𝑡 is
increased by ∆𝑝𝑒𝑥𝑡. The pressure change at 𝑃 is

∆𝑝 = ∆𝑝𝑒𝑥𝑡 .

The pressure change is independent of ℎ, so it holds for
all points within the liquid, as Pascal’s principle states.
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5. Pascal's Principle

• Pascal’s Principle and the Hydraulic Lever

The figure shows a hydraulic lever. A downward
force Ԧ𝐹𝑖 is applied on the left-hand piston of area 𝐴𝑖.
The oil then produces an upward force of magnitude
𝐹𝑜 on the right-hand piston of area 𝐴𝑜. To keep the
system in equilibrium, there must be a downward
force of magnitude 𝐹𝑜 on the output piston from an
external load (now shown). The applied force Ԧ𝐹𝑖
and the downward force Ԧ𝐹𝑜 from the load produce
a change ∆𝑝 in the pressure of the liquid that is
given by

∆𝑝 =
𝐹𝑖
𝐴𝑖

=
𝐹𝑜
𝐴𝑜

,
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5. Pascal's Principle

• Pascal’s Principle and the Hydraulic Lever

∆𝑝 =
𝐹𝑖
𝐴𝑖

=
𝐹𝑜
𝐴𝑜

,

so

𝐹𝑜 =
𝐴𝑜
𝐴𝑖

𝐹𝑖 .

In we move the input piston downward a distance
𝑑𝑖, the output piston moves upward a distance 𝑑𝑜,
such that the same volume of the incompressible
liquid is displaced at both pistons. Then

𝑉 = 𝐴𝑖𝑑𝑖 = 𝐴𝑜𝑑𝑜,

22



5. Pascal's Principle

• Pascal’s Principle and the Hydraulic Lever

𝑉 = 𝐴𝑖𝑑𝑖 = 𝐴𝑜𝑑𝑜,

which we can write as

𝑑𝑜 = 𝑑𝑖
𝐴𝑖
𝐴𝑜

.

The output work is

𝑊 = 𝐹𝑜𝑑𝑜 = 𝐹𝑖
𝐴𝑜
𝐴𝑖

𝑑𝑖
𝐴𝑖
𝐴𝑜

= 𝐹𝑖𝑑𝑖 .

The work 𝑊 done on the input piston is equal to
the work 𝑊 done by the output piston in lifting
the load.
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5. Pascal's Principle

• Pascal’s Principle and the Hydraulic Lever

The advantage of a hydraulic lever is:

With a hydraulic lever, a given force applied over a
given distance can be transformed to a greater force
applied over a smaller distance.
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6. Archimedes’ Principle

• Consider the situation in the figure where a sack of water
is in static equilibrium. The sack experiences an upward
force from the surrounding water, opposing its weight.
This upward force is a buoyant force Ԧ𝐹𝑏. It is due to the
fact that the water near the bottom of the sack is greater
than the pressure near its top.

• The magnitude of the buoyant force Ԧ𝐹𝑏 is equal to the
magnitude 𝑚𝑓𝑔 , where 𝑚𝑓 is the mass of the fluid
(water). Thus the magnitude of the buoyant force is equal
to the weight of water in the sack.
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6. Archimedes’ Principle

• Archimedes’ Principle: When a body is fully or partially submerged in a fluid, a
buoyant force from the surrounding fluid acts on the body. The force is directed
upward and has a magnitude equal to the weight 𝑚𝑓𝑔 of the fluid that has been
displaced by the body.

• The buoyant force on a body in a fluid has the magnitude

𝐹𝑏 = 𝑚𝑓𝑔,

where 𝑚𝑓 is the mass of the fluid.
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6. Archimedes’ Principle

• Floating:

When a lightweight object is placed in water, the object moves into the water
because of the gravitational force. The magnitude of 𝐹𝑏 increases as the object
displaces more and more water. The object comes to rest when 𝐹𝑏 = 𝐹𝑔. The
object is then in static equilibrium and said to be floating.

We can write
𝐹𝑏 = 𝐹𝑔,

or
𝐹𝑔 = 𝑚𝑓𝑔.
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6. Archimedes’ Principle

• Apparent weight:

If we measure the weight of a stone, then repeat the measurement
underwater we get a different reading. The upward buoyant force on the
stone decreases the second reading. That second reading is an apparent
weight. An apparent weight is related to the actual weight of a body and the
buoyant force on the body by

weightapp = weight − 𝐹𝑏 .

What is the apparent weight of a floating body?
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6. Archimedes’ Principle

(a) All tie.

(b) 0.95𝜌0, 𝜌0, 1.1𝜌0.
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6. Archimedes’ Principle

Example 4: In the figure, a block of density 𝜌 = 800 kg/m3

floats face down in a fluid of density 𝜌𝑓 = 1200 kg/m3. The
block has height 𝐻 = 6.0 cm.

(a) By what depth ℎ is the block submerged?

For a floating body
𝐹𝑏 = 𝐹𝑔.

We know that 𝐹𝑏 = 𝑚𝑓𝑔 = 𝜌𝑓𝑉𝑓𝑔 = 𝜌𝑓𝐴ℎ𝑔. Also, 𝐹𝑔 = 𝑚𝑔
= 𝜌𝑉𝑔 = 𝜌𝐴𝐻𝑔. We therefore can write

𝜌𝑓ℎ = 𝜌𝐻.

Solving for ℎ and substituting,

ℎ =
𝜌

𝜌𝑓
𝐻 =

800 kg/m3

1200 kg/m3
6.0 cm = 4.0 cm.
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6. Archimedes’ Principle

(b) If the block is held fully submerged and then released,
what is the magnitude of its acceleration?

Newton's second law for components along an axis normal
to the block is

𝐹𝑏 − 𝐹𝑔 = 𝑚𝑎.

or
𝜌𝑓𝐴𝐻𝑔 − 𝜌𝐴𝐻𝑔 = 𝜌𝐴𝐻𝑎.

Solving for 𝑎 and substituting yield

𝑎 =
𝜌𝑓
𝜌
− 1 𝑔 =

1200 kg/m3

800 kg/m3
− 1 9.8

m

s2
= 4.9

m

s2
.
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7. The Equation of Continuity

• We want to relate 𝑣 and 𝐴 for the steady
flow of an ideal fluid through a tube with
varying cross section. During a time interval
∆𝑡 a volume ∆𝑉 = 𝐴1𝑣1∆𝑡 of a fluid enters
the left end of the tube. An identical
volume ∆𝑉 = 𝐴2𝑣2∆𝑡 must emerge from
the right end, since the fluid is
incompressible. We therefore write

𝐴1𝑣1 = 𝐴2𝑣2.

• This equation is called the equation of
continuity.
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7. The Equation of Continuity

• We can rewrite the continuity equation as

𝑅𝑉 = 𝐴𝑣 = a constnat,

where 𝑅𝑉 is the volume flow rate of the
fluid. Its SI unit is m3/s.

• If the density 𝜌 of the fluid is uniform we
can multiply the last relation by 𝜌 to get the
mass flow rate 𝑅𝑚:

𝑅𝑚 = 𝜌𝑅𝑉 = 𝜌𝐴𝑣 = a constnat.

The SI unit of 𝑅𝑚 is kg/s.
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7. The Equation of Continuity

13 cm3/s outward.
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7. The Equation of Continuity

Example 5: The figure shows how the stream of water
emerging from a faucet “necks down” as it falls. This change
in the horizontal cross-sectional area is characteristic of any
laminar (nonturbulant) falling stream because the
gravitational force increases the speed of the stream. Here
the indicated cross-sectional areas are 𝐴0 = 1.2 cm2 𝐴
= 0.35 cm2 . The two levels are separated by a vertical
distance ℎ = 45 mm. What is the volume flow rate from the
tap?

The volume flow rate through the higher cross section must 
be the same as that through the lower cross section:

𝐴0𝑣0 = 𝐴𝑣.
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7. The Equation of Continuity

𝐴0𝑣0 = 𝐴𝑣.

Because the water is falling freely

𝑣2 = 𝑣0
2 + 2𝑔ℎ.

Substituting for 𝑣 in the last equation and solving for 𝑣0 give

𝑣0 =
2𝑔ℎ𝐴2

𝐴0
2 − 𝐴2

=
2 9.8 m/s2 0.045 m 0.35 cm2 2

1.2 cm2 2 − 0.35 cm2 2

= 0.286 m/s.

The volume flow rate is then

𝑅𝑉 = 𝐴0𝑣0 = 1.2 cm2 28.6 cm/s = 34 cm3/s.
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8. Bernoulli’s Equation 

• Consider the situation in the figure where an ideal fluid is
flowing through the tube at a steady rate. By applying the
principle of conservation of energy to the fluid, we relate
𝑣, 𝑝 and 𝑦 at the ends of the tube by

𝑝1 +
1

2
𝜌𝑣1

2 + 𝜌𝑔𝑦1 = 𝑝2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔𝑦2.

• The term
1

2
𝜌𝑣2 is called the fluid’s kinetic energy density.

• We can also write

𝑝 +
1

2
𝜌𝑣2 + 𝜌𝑔𝑦 = a constant.

• These are two equivalent forms of Bernoulli’s equation.
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8. Bernoulli’s Equation 

• When 𝑦1 = 𝑦2 the Bernoulli’s equation becomes

𝑝1 +
1

2
𝜌𝑣1

2 = 𝑝2 +
1

2
𝜌𝑣2

2.

• This equation predicts that if the speed of a fluid element
increases as the element travels along a horizontal
streamline, the pressure of the fluid must decrease, and
conversely.
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8. Bernoulli’s Equation 

(a) All tie.

(b) 1, 2 & 3 tie, 4.

(c) 4, 3, 2, 1.
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8. Bernoulli’s Equation 

Example 6: Ethanol of density 𝜌 = 791 kg/m3 flows smoothly through a
horizontal pipe that tapers in cross-sectional area from 𝐴1 = 1.20 × 10−3 m2 to 𝐴2
= 𝐴1/2. The pressure difference between the wide and narrow sections of the pipe
is 4120 Pa. What is the volume flow rate 𝑅𝑉 of the ethanol?

The continuity equation 𝐴1𝑣1 = 𝐴2𝑣2 tells us that

𝑣2 =
𝐴1
𝐴2

𝑣1 = 2𝑣1.

Using Bernoulli’s equation 𝑝1 +
1

2
𝜌𝑣1

2 = 𝑝2 +
1

2
𝜌𝑣2

2 with 𝑦1 = 𝑦2 and rearranging

we get

𝑝1 − 𝑝2 =
1

2
𝜌 𝑣2

2 − 𝑣1
2 =

1

2
𝜌 4𝑣1

2 − 𝑣1
2 =

3

2
𝜌𝑣1

2.

40



8. Bernoulli’s Equation 

Solving for 𝑣1 yield

𝑣1 =
2

3𝜌
𝑝1 − 𝑝2 .

The volume flow rate is then

𝑅𝑉 = 𝐴1𝑣1 = 𝐴1
2

3𝜌
𝑝1 − 𝑝2

= 1.20 × 10−3 m2
2 4120 Pa

3 791 kg/m3
= 2.23 × 10−3 m3/s.
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8. Bernoulli’s Equation 

Example 7: What is the speed 𝑣 of the water exiting a
tank though a hole a distance ℎ below the water
surface?

Bernoulli’s equation for the problem reads

𝑝0 +
1

2
𝜌𝑣0

2 + 𝜌𝑔ℎ = 𝑝0 +
1

2
𝜌𝑣2 + 𝜌𝑔 0 ,

where 𝑣0 is the speed of the water through the tank.
Because the area of the base tank is much larger than
the hole’s area, 𝑣0 is very small and we can neglect

the term
1

2
𝜌𝑣0

2. Solving for 𝑣 we get

𝑣 = 2𝑔ℎ.
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