
Chapter 12
Equilibrium and Elasticity
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1. Equilibrium

• Consider these objects: (1) a book on a table (2) a hockey puck sliding with
constant velocity across a frictionless surface (3) the rotating blades of a
ceiling fan and (4) the wheel of a bicycle that is travelling along a straight path
at constant speed.

• For each of these objects:

1. The linear momentum 𝑃 of its center of mass is constant.

2. The angular momentum 𝐿 about its center of mass, or about any other
point, is constant.

• We say that such objects are in equilibrium. The two requirements for
equilibrium are then

𝑃 = a constnat , 𝐿 = a constnat.
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1. Equilibrium

• In this chapter we concentrate on situations in which the objects are not
moving transnationally (𝑃 = 0) or rotationally (𝐿 = 0), in the reference frame
in which we observer them. Such objects are in static equilibrium.

Which of the four examples above are in static equilibrium?

• If a body returns to a state of static equilibrium after having been displaced
from that state by a force, the body is said to be in stable equilibrium. If the
force displacing the body and ends the equilibrium, the body is in unstable
equilibrium.
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1. Equilibrium
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2. The Requirements of Equilibrium

• If a body is in translational equilibrium (𝑃 = a constnat) then by Newton’s
second law

Ԧ𝐹net = 0.

• If a body is in rotational equilibrium (𝐿 = a constnat) then by Newton’s second
law (in the angular form)

Ԧ𝜏net = 0.

• The two requirements for a body to be in equilibrium are then:

1. The vector sum of all external forces that act on the body must be zero.

2. The vector sum of all external torques that act on the body, measured
about any possible point, must be zero.
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2. The Requirements of Equilibrium

• In rectangular components, the two equilibrium conditions are:

𝐹net,𝑥 = 0, 𝐹net,𝑦 = 0, 𝐹net,𝑧 = 0,

and
𝜏net,𝑥 = 0, 𝜏net,𝑦 = 0, 𝜏net,𝑧 = 0.

• We will consider simplified situations in which the forces that act on the body
lie in the 𝑥𝑦 plane. In this case the equilibrium conditions reduce to

𝐹net,𝑥 = 0, 𝐹net,𝑦 = 0,

and
𝜏net,𝑧 = 0.

Why 𝜏net,𝑧 in particular?
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2. The Requirements of Equilibrium
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3. The Center of Gravity

• The gravitational force Ԧ𝐹𝑔 on an extended body is the vector sum of the
individual gravitational forces acting on every element (atom) of the body.

• Alternatively, we can consider a single point, called the center of gravity (cog)

of the body, on which the gravitational force Ԧ𝐹𝑔 effectively act.

• If Ԧ𝑔 is constant over a body, then the center of gravity coincides with the
body’s center of mass. (See your textbook for the proof.)

• The net torque about the center of gravity due to the gravitational forces is
zero.
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4. Some Examples of Static Equilibrium
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4. Some Examples of Static Equilibrium

Example 1: a ladder of length 𝐿 = 12 m and mass 𝑚
= 45 kg leans against a slick wall (that is, there is no friction
between the ladder and the wall). The ladder’s upper end is
at height ℎ = 9.3 m above the pavement on which the
lower end is supported (the pavement is not frictionless).
The ladder’s center of mass is 𝐿/3 from the lower end,
along the length of the ladder. A firefighter of mass 𝑀
= 72 kg climbs the ladder until his center of mass is 𝐿/2
from the lower end. What then are the magnitudes of the
forces on the ladder from the wall and the pavement?

11



4. Some Examples of Static Equilibrium

Using 𝜏 = 𝑟⊥𝐹, the torques balancing equation 𝜏net,𝑧 = 0
about the origin 𝑂 becomes

−ℎ𝐹𝑤 +
𝑎

2
𝑀𝑔 +

𝑎

3
𝑚𝑔 + 0 𝐹𝑝𝑦 + 0 𝐹𝑝𝑥 = 0.

We get then

𝐹𝑤 =
𝑎

6ℎ
3𝑀 + 2𝑚 𝑔

=
7.6 m

6 9.3 m
3 72 kg + 2 45 kg 9.8 m/s2

≈ 410 N.

Here 𝑎 = 12 m 2 − 9.3 m 2 = 7.6 m.

12



4. Some Examples of Static Equilibrium

The equation 𝐹net,𝑥 = 0 reads

𝐹𝑤 − 𝐹𝑝𝑥 = 0,

which yields 𝐹𝑝𝑥 = 𝐹𝑤 = 410 N. The equation 𝐹net,𝑦 = 0
gives

𝐹𝑝𝑦 −𝑀𝑔 −𝑚𝑔 = 0,

or
𝐹𝑝𝑦 = 𝑀 +𝑚 𝑔 = 72 kg + 45 kg 9.8 m/s2

≈ 1100 N.
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4. Some Examples of Static Equilibrium

Example 2: The figure shows a safe (mass 𝑀
= 430 kg) hanging by a rope (negligible mass)
from a boom (𝑎 = 1.9 m and 𝑏 = 2.5 m) that
consists of a uniform hinged beam (𝑚 = 85 kg )
and horizontal cable (negligible mass).

(a) What is the tension 𝑇𝑐 in the cable? In other
words, what is the magnitude of the force 𝑇𝑐 on
the beam from the cable?
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4. Some Examples of Static Equilibrium

Writing the torques in the form 𝜏 = 𝑟⊥𝐹, the
torques balancing equation 𝜏net,𝑧 = 0 about 𝑂
becomes

𝑎𝑇𝑐 − 𝑏𝑇𝑟 − 𝑏/2 𝑚𝑔 = 0.

Solving for 𝑇𝑐, using 𝑇𝑟 = 𝑀𝑔 and substituting
yield

𝑇𝑐 =
𝑏

𝑎
𝑀 +𝑚/2 𝑔

=
2.5 m

1.9 m
430 kg + 45 kg/2 9.8 m/s2

= 6093 N ≈ 6100 N.
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4. Some Examples of Static Equilibrium

(b) Find the magnitude 𝐹 of the net force on the
beam from the hinge.

The horizontal forces balancing equation 𝐹net,𝑥
= 0 reads

𝐹ℎ − 𝑇𝑐 = 0,

which yields 𝐹ℎ = 𝑇𝑐 = 6093 N.

The vertical forces balancing equation 𝐹net,𝑦 = 0
reads

𝐹𝑣 −𝑚𝑔 − 𝑇𝑟 = 0,

which yields
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4. Some Examples of Static Equilibrium

𝐹𝑣 = 𝑚𝑔 + 𝑇𝑟 = 𝑀 +𝑚 𝑔.

Substituting gives

𝐹𝑣 = 430 kg + 45 kg 9.8 m/s2 = 5047 N.

Therefore

𝐹 = 𝐹ℎ
2 + 𝐹𝑣

2

= 6093 N 2 + 5047 N 2

≈ 7900 N.
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4. Some Examples of Static Equilibrium

Example 3: In the figure, a uniform beam, of length 𝐿
and mass 𝑚 = 1.8 kg, is at rest on two scales. A
uniform block, with mass 𝑀 = 2.7 kg, is at rest on
the beam, with its center a distance 𝐿/4 from the
beam’s left end. What do the scales read?

The torques balancing equation 𝜏net,𝑧 = 0 about the
left end of the beam reads

𝐿𝐹𝑟 − 𝐿/2 𝑚𝑔 − 𝐿/4 𝑀𝑔 = 0.

𝐹𝑟 is then

𝐹𝑟 = 𝑚/2 +𝑀/4 𝑔

= 1.8 kg/2 + 2.7 kg/4 9.8 m/s2 ≈ 15 N.
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4. Some Examples of Static Equilibrium

The vertical balancing equation 𝐹net,𝑦 = 0 reads

𝐹𝑙 −𝑀𝑔 −𝑚𝑔 + 𝐹𝑟 = 0,

which gives

𝐹𝑙 = 𝑀 +𝑚 𝑔 − 𝐹𝑟

= 2.7 kg + 1.8 kg/4 9.8 m/s2 − 15.4 N

≈ 29 N.
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5. Elasticity

• The atoms in a solid settle into equilibrium positions in
a three-dimensional lattice. A lattice is a repetitive
arrangement in which each atom is at a well-defined
equilibrium distance from its nearest neighbors.

• The atoms are held together by interatomic forces that
are modeled as tiny springs. These springs are
extremely stiff; the lattice is remarkably rigid. This is
why we perceive ordinary objects as perfectly rigid.

• In soft material, such as rubber, the atoms do not form
a rigid lattice but are aligned in a long, flexible
molecular chains that are loosely bound to their
neighboring chains.
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5. Elasticity

• All real rigid bodies are to some extent elastic; we can change their
dimensions slightly by pulling, pushing, twisting, or compressing them. For
example, if we hanged a small size car to a 1 m long and 1 cm in diameter
steel rod, the rod will extend by only 0.5 mm. When the car is removed, the
rod will return to its original length.

• If two cars are hanged to the rod, the rod will be permanently stretched. If
three cars are attached to the rod, the rod will break, after it elongates by less
than 2 mm.
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5. Elasticity

• The three figures show three ways in which a solid might change its dimension
under the influence of an external force. In the three cases, there is a
deforming force per unit area or stress that produces unit deformation or
strain.
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5. Elasticity
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Tensile stress
↓

Stretching

Shearing stress
↓

Deformation

Hydraulic stress
↓

Compression



5. Elasticity
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• Stresses and strains are proportional to each
other. The constant of proportionality is called
a modulus of elasticity. Therefore we write

stress = modulus × strain.

• The figure shows a stress-strain curve for a
steel test specimen. The stress-strain is linear
before the yield strength 𝑆𝑦 is reached.
Beyond 𝑆𝑦 , the specimen becomes
permanently deformed. If the stress is
increased further, the specimen eventually
ruptures when the ultimate strength 𝑆𝑢 is
reached.



5. Elasticity

• Tension and Compression: For simple tension or
compression, the stress on an object is 𝐹/𝐴, where 𝐹 is
the magnitude of applied force perpendicular to an area
𝐴 on the object.

The strain or, unit deformation is the dimensionless
quantity ∆𝐿/𝐿. If the specimen is a long rod and the stress
does not exceed the yield strength then every section of it
experience the same strain when a given stress is applied.

The modulus for tensile and compressive stresses is
called the Young’s modulus 𝐸. We can write

𝐹

𝐴
= 𝐸

∆𝐿

𝐿
.
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5. Elasticity

𝐹/𝐴 has the SI unit of N/m2 and 𝐸 has the same units as
𝐹/𝐴 since ∆𝐿/𝐿 is dimensionless.

The Young’s modulus may be nearly the same for tension
and compression. However, the object’s ultimate strength
may be very different for the two types of stress.
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5. Elasticity

• Shearing: In the case of shearing the stress is also
a force per unit area, but it lies in the plane of the
area. The strain is ∆𝑥/𝐿 . The corresponding
modulus is called the shear modulus 𝐺 . For
shearing we write

𝐹

𝐴
= 𝐺

∆𝑥

𝐿
.
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5. Elasticity

• Hydraulic Stress: The hydraulic stress is the
pressure of a fluid (gas or liquid) on an object. The
pressure 𝑝 is a force per unit area. The strain is
now ∆𝑉/𝑉. The corresponding modulus is called
the bulk modulus 𝐵. The object is said to be under
hydraulic compression and the pressure can be
called the hydraulic stress. We can write

𝑝 = 𝐵
∆𝑉

𝑉
.

28



5. Elasticity

Example 4: One end of a steel rod of radius 𝑅 = 9.5 mm and length 𝐿 = 81 cm is
held in a vise. A force of magnitude 𝐹 = 62 kN is then applied perpendicularly to
the end face (uniformly across the area) at the other end, pulling directly away
from the vise. What are the stress on the rod and the elongation ∆𝐿 and strain of
the rod? The Young’s modulus for steel is 2.0 × 1011 N/m2.

The stress is

𝐹

𝐴
=

62 × 103 N

𝜋 9.5 × 10−3 m 2
= 2.2 × 108 N/m2.

The elongation of the rod is

∆𝐿 =
𝐹

𝐴

𝐿

𝐸
= 2.2 × 108 N/m2

0.81 m

2.0 × 1011 N/m2
= 8.9 × 10−4 m = 0.89 mm.
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5. Elasticity

The strain is then

∆𝐿

𝐿
=
8.9 × 10−4 m

0.81 m
= 1.1 × 10−3 = 0.11%.
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5. Elasticity

Example 5: A table has three legs that are 1.00 m in length and a fourth leg that is
longer by 𝑑 = 0.50 mm, so that the table wobbles slightly. A steel cylinder with
mass 𝑀 = 290 kg is placed on the table (which has a mass much less than 𝑀) so
that all four legs are compressed but unbuckled and the table is level but no longer
wobbles. The legs are wooden cylinders with cross-sectional area 𝐴 = 1.0 cm2;
Young’s modulus is 𝐸 = 1.3 × 1010 N/m2 . What are the magnitudes of the forces
on the legs from the floor?

Each of the three short legs is compressed by ∆𝐿3 under the influence of force 𝐹3 .
The long leg is compressed by ∆𝐿4 under the influence of force 𝐹4. Because the
tabletop is level

∆𝐿4 = ∆𝐿3 + 𝑑.
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5. Elasticity

We can relate a change of length to its corresponding force by ∆𝐿 =
𝐹𝐿

𝐴𝐸
. The last

equation becomes

𝐹4𝐿

𝐴𝐸
=
𝐹3𝐿

𝐴𝐸
+ 𝑑.

Now we use the balance of vertical forces (𝐹net,𝑦 = 0) and write

3𝐹3 + 𝐹4 −𝑀𝑔 = 0.

Solving for 𝐹3 we find

𝐹3 =
1

4
𝑀𝑔 −

𝑑𝐴𝐸

𝐿

=
1

4
290 kg 9.8 m/s2 −

5.0 × 10−4m 10−4m2 1.3 × 1010 N/m2

1.00 m
≈ 550 N
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5. Elasticity
Then 𝐹4 is given by

𝐹4 = 𝑀𝑔 − 3𝐹3 = 290 kg 9.8
m

s2
− 3 548 N ≈ 1200 N.

Exercise: Calculate ∆𝐿3 and ∆𝐿4.
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