KFUPM	
Department of Physics	
Phys412	
Homework # 10	
Due on Saturday, May 26, 2007	

Problem 1

Suppose you have an ideal four-level laser for which B = 1, $V_a = 1$, $\tau = 0.1$, and $\tau_c = 0.1$, where B is the stimulated emission rate per photon, V_a is the volume of the active medium, τ is the lifetime of the laser upper level and τ_c is the life time of the cavity. Assume initially you have one photon in the cavity.

- a- Solve the two rate equations numerically as a function of time and show that number density of the upper level N and the number of photon in the cavity ϕ reach a steady state value within a time of about $10 \times \tau$ or $10 \times \tau_c$. Test this fact for pumping below and above threshold pumping, say $R_p = 0.1 R_{pc}$ and $R_p = 10 R_{pc}$.
- b- Solve the two rate equations numerically and find the value of N and ϕ for time much lager than τ and τ_c , say 100× τ for different pumping rate R_p. Plot N and ϕ as a function of R_p and compare the numerical solution with the analytical values obtained in you textbook.

Problem 2

A He-Xe laser has an optical cavity length of $L_e = 0.1$ m, and its transition at 3.51 µm is mainly Doppler broadened with a FWHM of $\Delta v_0 \approx 200$ MHz. If the logarithmic loss per pass $\gamma = 0.5$, calculate the ratio $\Delta v_0 / \Delta v_c$ between the width of laser transmission and cavity mode resonance. Estimate the frequency pulling of laser emission when the cavity mode resonance v_c is detuned from the center of the gainline v_0 by v_0 - v_c =50 MHz.

Problem 3

Estimate the Schawlow-Townes limit to the laser linewidth due to spontaneous emission of a single-longitudinal-mode A Nd:YAG in a ring cavity oscillating at 1.064 μ m. The laser has an output power of 50 mW, an optical length of the cavity L_e = 15 cm, and a logarithmic loss per pass γ = 0.02.

Problem 4

In a laser which can be considered as space-independent four-level laser, the threshold pump power P_{th} was measured to be 500 mW if the output

KFUPM Department of Physics Phys412

Homework # 10

Due on Saturday, May 26, 2007

coupler has reflectivity of 85% and $P_{th} = 400 \text{ mW}$ if the reflectivity of the output coupler is 90%. Estimate the internal logarithmic loss of the laser assuming the second laser mirror is perfectly reflecting.

Problem 5

a Ti:sapphire laser operating at 780 nm is tuned by a birefringent plate inserted at Brewster angle. The plate is rotated such that the ordinary and extraordinary refractive indices are $n_0 = 1.535$ and $n_e=1.544$, respectively. Find the plate thickness for which the wavelength separation between two consecutive transmission maxima is 5 nm.