	KFUPM	
	Department of Physics	
	Phys412	
Homework # 3		
	Due on Saturday, March 17, 2007	

Problem 1

The upper laser level of the two ultraviolet He-Cd laser decay radiatively via the laser transitions that occur at 325.0 nm with a transition probability of $A = 7.8 \times 10^5 \text{ s}^{-1}$ and at 353.6 nm with $A = 1.6 \times 10^5 \text{ s}^{-1}$. Find the total lifetime of the upper energy level due to these two transitions.

Problem 2

Calculate the transition probability for the transition in hydrogen from the excited sublevel $2p^2P_{3/2}^0$ to the ground level $1s^2S_{1/2}$.

The wave function for $2p^2 P_{3/2}^0$ level is

$$u 2 = \frac{1}{8\pi^{1/2} a_0^{5/2}} r e^{-r/2a_0} \sin \theta e^{i\phi},$$

and the wave function for $1s^2S_{1/2}$ level is

$$u_1 = \frac{1}{\pi^{1/2} a_0^{3/2}} e^{-r/a_0}$$
.

Here a_0 is the Bohr radius = 0.0529 nm and r, θ , and ϕ are the polar coordinates. The transition wavelength of these two levels is 121.7 nm.

Problem 3

Use the hard-sphere model to derive equation 2.5.12 of your textbook.

Problem 4

Show that the convolution of two Gaussian lines of widths Δv_1 and Δv_2 gives a Gaussian line of width $\Delta v = \sqrt{\Delta v_1^2 + \Delta v_2^2}$.

Problem 5

Derive equation 2.8.4 from equations 2.8.1, 2.8.2, and 2.8.3 of your textbook.