Q1. Use $V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q^{\prime}}{r}$ to find the electric potential at any point in the x -y plane due to a straight-line segment of length $2 L$ and linear charge density λ. The segment is located along the x -axis with its midpoint at the origin.

Q2. Use $\vec{E}=-\vec{\nabla} V$ to find the electric field. Compare your result with that of the previous homework. Are they the same?

Q3. Use Mathematica to show on the same plot the segment, a stream plot of the electric field \vec{E}, and a contour plot of $V(\vec{r})$ in the range $-2 \leq x \leq 2$ and $-2 \leq y \leq$ 2. Use $L=1$ and $\lambda=4 \pi \epsilon_{0}$. Use the option "ContourShading -> None" in your contour plot. What can you say about the direction of the electric field with respect to the equipotential surfaces (the contour lines)?

