Q1.
Find the separation vector $\boldsymbol{\imath}$ from the source point $(2,9,-7)$ to the field point $(-4$, 5,6). Determine its magnitude (\boldsymbol{r}), and construct the unit vector $\hat{\boldsymbol{\eta}}$.

Q 2.
A. Find the gradient of $T(x, y)=\sin (x) \cos (y)$.
B. Use Mathematica to plot the contours of $T(x, y)$ in the range $-2 \leq x \leq 2$ and $-2 \leq y \leq 2$. Label the x-axis and the y-axis.
C. Pick three points on different contours and draw the gradient of T at these points.
D. Is the gradient perpendicular to the contours and pointing towards the steepest ascent of $T(x, y)$?

Q3.
A. Find the curl of $\vec{v}(x, y)=\sin (y) \hat{\mathrm{x}}+\sin (x) \hat{y}$.
B. Use Mathematica to plot a vector plot of $\vec{v}(x, y)$ in the range $-2 \leq x \leq 2$ and $-2 \leq y \leq 2$. Label the x -axis and the y -axis.
C. Pick three points such that their curl is negative, zero, and positive, respectively. Mark the points in your vector plot and find their curl.
D. What can you say about your calculations and the rotation of the vector \vec{v} around the point you picked?

