KFUPM

An infinitely long cylinder, of radius R, carries a "frozen-in" magnetization parallel to the axis,

$$
\mathbf{M}=k s^{2} \widehat{\mathbf{z}}
$$

where k is a constant and s is the distance from the axis; there is no free current anywhere.
$>$ Find the magnetic field inside and outside the cylinder by two different methods:
1- Locate all the bound currents, and then calculate the field they produce.
2- Use Ampere's law $\oint \mathbf{H} \cdot d \mathbf{l}=I_{f e n c}$ to find \mathbf{H}, and then get \mathbf{B}.
Sketch H, M and B / μ_{0} as a function of s. Let $k=1$.

