The figure shows two semi-infinite grounded conducting planes meeting along the z-axis. The angle between them is 60°. A positive point charge is located at $(s, \phi, z)=\left(0.5,15^{\circ}, 0\right)$. Take $q=4 \pi \epsilon_{0}$.

Use Mathematica to

$>$ show in the same plot a plot of the point charge and the contours of the electric potential between the conducting plates in the $x-y$ plane that is $z=0$ in the range $-0.1 \geq x \geq 1$ and range $-0.1 \geq y \geq 1$. Use the following options in your CountorPlot: ContourShading -> None, ContourLabels -> All, and Contours -> $\{0, .5,1,1.5,2,2.5,3,3.5,4\}$
$>$ show the contours of the electric potential between the conducting plates in a plane parallel to the $x-y$ plane at $z=1$ in the range $-0.1 \geq x \geq 1$ and range $-0.1 \geq y \geq 1$. Use the following options in your CountorPlot:
ContourShading -> None, ContourLabels -> All, and Contours -> Table[0.1 i, \{i, 0, 0.3, .03\}].
$>$ show in the same plot a plot of the point charge and the contours of the electric potential and the streamlines of the electric field between the plates in the $x-y$ plane in the range $-0.1 \geq x \geq 1$ and range $-0.1 \geq y \geq 1$. Use the same options of step 1.
$>$ Comment on the direction of the electric field at the conducting plates.

