$>$ Find the electric flux through a disc of radius s_{0} located a distance z_{0} from a point charge q_{0}. See the figure. Use two methods to find the answer

1- symmetry argument [hint: the solid angle subtended by the disc is

$$
\left.\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\theta_{0}} \sin \theta d \theta d \phi=2 \pi\left(1-\cos \theta_{0}\right)=2 \pi\left(1-\frac{z_{0}}{\sqrt{s_{0}^{2}+z_{0}^{2}}}\right)\right] \text {, and }
$$

2- direct calculation using $\phi_{E}=\int_{S} \vec{E} \cdot d \vec{a}$

