
STUDENT No. ______

Q1. Two identical charged particles (m = 1.37 g, q = 0.970 μ C) are initially held 1.18 cm away from each other. They are released from rest. What is the speed of each particle, in the unit m/s, when the distance between them is doubled? $k = 8.99 \times 10^9$ Nm²/C².

A) 45.7
B) 22.9
C) 32.3
D) 16.2
E) 64.7
$$V = \int \frac{k q^2}{2md} = \int \frac{8.99 \times 10^3}{2(1.18 \times 10^2)(1.34 \times 10^3)} 0.970 \times 10^6 = 16.2 \text{ m/s}$$

Q2. The electric potential over a particular region is given by $V(x, y) = 9.36 - 7.24 x - 5.63 y^2$. Determine the angle between the electric field \vec{E} at point P and the positive x axis. The coordinates of the point P are x = 1.37 m and y = 2.19 m.

A) 69.8 °	$E_{x} = -\frac{\partial V}{\partial x} = -(-7.24)$	A F
B) 73.6 °	94	
C) 88.7 °	E 3V / E/3(31) V	Λθ
D) 83.3 °	$E_y = -\frac{3V}{37} = -(-5.63(29))$	× ×
E) 59.6 °	-115.6	3×2×2·19)=73.6°
	$\theta = \tan^{3}\left(\frac{5}{4}\right) = \tan^{3}\left(\frac{5}{4}\right)$	$\frac{3 \times 2 \times 2 \cdot 15}{3 \times 2 \times 2 \cdot 15} = 73.6$
	bx /	t,24

23 A B © D E	48 A B O D E	73 A B O D E	98 A B C D E	123 A B C D E
24 A B O D E	49 A B C D E	74 (A (B) (C) (D) (E)	99 A B © D E	124 (A) (B) (C) (D) (E)
25 A B C D E	50 A B C D E	75 A B C D E	100 A B C D E	125 A B C D E