
STUDENT No. ______

Q1. Three charges ($q_1 = +26.3 \mu C$, $q_2 = -43.1 \mu C$, $q_3 = -43.1 \mu C$) are fixed at the corners of an equilateral triangle of side d = 0.256 m as shown in the figure. What is the magnitude of the force acting on charge q_1 in the unit N? $k = 8.99 \times 10^9$ N/C

A) 269
B) 48.0
C) 155
D) 307
E) 311
$$= 2 \frac{k |9| |9|}{J^{2}} \cos \theta$$

$$= 2 \frac{(8-99 \times 10^{9})(263 \times 10^{6})(43.1 \times 10^{6})}{(0.256)^{2}} \cos (3^{6}) \frac{1}{4} \cos (3^{6}) \cos (3^$$

Q2. Two point charges, $q_1 = -9.56$ nC and $q_2 = +9.56$ nC, are separated by 8.79 mm and forming an electric dipole. The charges are in a uniform electric field whose direction makes an angle of 38.2° with the line connecting the charges. Find the magnitude of this electric field, in N/C, if the torque exerted on the dipole has magnitude of 11.2×10^{-9} N.m.

A) 216 B) 170	$\gamma = pE6in\theta = gdE3in\theta$
C) 152 D) 278	$E = \frac{c}{qd\sin\theta}$
E) 133	$= \frac{11.2 \times 10^{9}}{(9.56 \times 10^{9})(8.79 \times 10^{3}) \sin(38.2^{\circ})} = 216 \%$

23 A B O D E	48 (A) (B) (C) (D) (E)	73 A B O D E	98 A B C D E	123 A B O D E
24 (A (B) (C) (D) (E)	49 A B C D E	74 (A (B) (C) (D) (E)	99 A B C D E	124 A B O D E
25 A B C D E	50 A B C D E	75 A B C D E	100 A B C D E	125 A B C D E