STUDENT No.

NAME ____

SECTION No. _

1 A B C D E	26 & B C D E	51 & B © D E	76 A B C D E	101 & B C D E
2 A B C D E	27 A B C D E	52 A B C D E	77 A B C D E	102 @ B C D E
3 A B C D E	28 A B C D E	53 A B C D E	78 A B C D E	103 A B C D E

Q1. The figure shows capacitor $C_1 = 10.7 \ \mu\text{F}$ charged to a potential difference of $V_i = 32.1 \ \text{V}$ and another uncharged capacitor $C_2 = 28.3 \ \mu\text{F}$. If you close the switch S to connect the two capacitors, find the new voltage V_f across the capacitors in the unit V.

A) 12.1	$9_{:} = 9_{1} + 9_{2}$	+I I [−] V _i
B) 23.3		
C) 8.81	$C'\Lambda' = C'\Lambda^{\dagger} + C^{\dagger}\Lambda^{\dagger}$	s c
D) 84.9		• •C ₂
E) 6.87	$V_{f} = \frac{C_{i}}{C_{i}+C_{2}}V_{i} = \frac{10.7}{10.7+28.3}32.1 = 8.81 V$	

Q2. For a 3.45 pF air-filled parallel plate capacitor, it is desired to store 44.9 μ J energy with a potential difference of 573 V using a dielectric material between the plates. What is dielectric constant of the material to be filled between the plates?

$$U = \frac{KCV^{2}}{2} \implies K = \frac{2U}{CV^{2}} = \frac{2(44.9 \times 10^{6})}{(3.45 \times 10^{12})(573)^{2}} = 79.3$$

23 A B C D E	48 A B C D E	73 A B C D E	98 A B C D E	123 A B C D E
24 A B C D E	49 A B C D E	74 A B C D E	99 A B C D E	124 & B C D E
25 A B C D E	50 A B C D E	75 A B C D E	100 A B C D E	125 A B C D E