Q1
M2-142-01
Three charges, $q 1=q 2=2.0 \mu \mathrm{C}$ and $\mathrm{Q}=4.0 \mu \mathrm{C}$, are fixed in their places as shown in Figure 1. Find the net electrostatic force on Q due to q 1 and q 2 . [$\hat{\imath}$ and $\hat{\jmath}$ are the unit vectors in the direction of x and y, respective
A) $(0.46 \hat{\imath}) \mathrm{N}$
B) $(0.17 \hat{\imath}) \mathrm{N}$
C) $(0.46 \hat{\imath}+0.17 \hat{\jmath}) \mathrm{N}$
D) $(0.17 \hat{\imath}-0.46 \hat{\jmath}) \mathrm{N}$
E) $(0.17 \hat{\imath}+0.32 \hat{\jmath}) \mathrm{N}$

Q2

$$
F \equiv F_{1}=F_{2}=\frac{k\left|9_{1}\right||Q|}{r^{2}}=\frac{9 \times 10^{9}\left(2 \times 10^{-6}\right)\left(4 \times 10^{-6}\right)}{(0.5)^{2}}=0.22 \mathrm{~N}
$$

$$
\begin{aligned}
& \vec{F}_{\text {nt }}=\vec{F}_{1}+\vec{F}_{2}=\left(F_{1 x}+F_{2 x}\right) \hat{i}+\left(F_{1 y}+F_{2 y}\right) \hat{\jmath} \\
& \left.\vec{F}_{\text {net }}=\left(F_{\cos \theta+}+F_{\cos \theta)}\right) \hat{\imath}+\left(F_{\sin \theta}-F \sin \theta\right)\right)
\end{aligned}
$$

$$
\begin{array}{r}
\vec{F}_{\text {net }}=2 F \cos \theta \hat{\imath}=2(0.22)\left(\frac{0.4}{0.5}\right) \hat{\imath}=(0.46 \mathrm{~N}) \hat{\imath} \\
\cos \theta \\
\mathrm{M} 2-112-02
\end{array}
$$

Consider three distant spheres with charges $Q_{1 i}=1 C, Q_{2 i}=2 C$, and $Q_{3 i}=3 C$. We allow these three charges to touch each other for a short time and then we separate them. The new charges of these spheres become $\mathrm{Q}_{1 \mathrm{f}}=\mathrm{q}, \mathrm{Q}_{2 f}=0.5 \mathrm{q}$, and $\mathrm{Q}_{3 f}=1.5 \mathrm{q}$. Find the value of q .
A) 2 C
B) 1 C

$$
\begin{aligned}
& \text { Total charge is conserved } \\
& \qquad \begin{aligned}
Q_{i i}+Q_{2 i}+Q_{3 i} & =Q_{4}+Q_{2 f}+Q_{3 f} \\
1+2+3 & =q+0.5 q+1.5 q \\
6 & =3 q \Rightarrow q
\end{aligned}
\end{aligned}
$$

C) 3 C
D) 6 C
E) 4 C

Q3

M2-112-04
Three point charges are located at the corners of a square as shown in Figure 2. Find the value of Q if the electric field at the corner A is zero. Take $q=-7.00 \mu C$
A) $19.8 \mu \mathrm{C}$
B) $14.0 \mu \mathrm{C}$
C) $9.90 \mu \mathrm{C}$
D) $4.95 \mu \mathrm{C}$
E) $2.54 \mu \mathrm{C}$

$$
\begin{aligned}
& \vec{e}_{3} \\
& E_{3}=\frac{k|Q|}{r^{2}}=\sqrt{E_{1}^{2}+E_{2}^{2}}=\sqrt{\left(\left.\frac{k|q|}{d^{2}}\right|^{2}+\left(\frac{k|q|}{d^{2}}\right)^{2}\right.}=\sqrt{2} \frac{k|q|}{d^{2}} \\
& d^{2}+d^{2} \quad \frac{k|Q|}{2 d^{2}}=\sqrt{2} \frac{k|q|}{d^{2}} \Rightarrow|Q|=2 \sqrt{2}|q|=19.8 \mu \mathrm{c} \\
& \text { Since } \vec{E}_{3} \text { point aw by from } Q \text {, } \\
& \text { (1) must be a positive charge } \\
& Q=+19.8 \mu<
\end{aligned}
$$

Q4
M2-122-02
A positively charged sphere of mass 1.00 g falls from rest from a height of 5.00 m , in a uniform electric field of magnitude $1.00 \times 10^{4} \mathrm{~N} / \mathrm{C}$ and is directed vertically downward. The sphere hits the ground with a speed of $20.0 \mathrm{~m} / \mathrm{s}$. What is the charge on the sphere?
A) $+3.02 \mu \mathrm{C}$
B) $-1.00 \mu \mathrm{C}$
C) $+5.23 \mu \mathrm{C}$
D) $-5.23 \mu \mathrm{C}$
E) $+1.00 \mu \mathrm{C}$

M2-132-04
Q5
An electron enters a region of uniform electric field $\vec{E}=(60 \hat{\imath}) \mathrm{N} / \mathrm{C}$ with a velocity $\vec{v}_{i}=$ $(50 \hat{\imath}) \mathrm{km} / \mathrm{s}$. How far does the electron travel in the first $2.0 \times 10^{-9} \mathrm{~s}$ time interval after entering the field?
A) $7.9 \times 10^{-5} \mathrm{~m}$
B) $1.1 \times 10^{-5} \mathrm{~m}$

$$
\vec{E}=(60 \mathrm{~N} / \mathrm{C}) \hat{\imath}
$$

C) $2.7 \times 10^{-4} \mathrm{~m}$
D) $1.3 \times 10^{-6} \mathrm{~m}$
E) $4.2 \times 10^{-5} \mathrm{~m}$

Q6

M2-132-05
A certain electric dipole is placed in a uniform electric field \vec{E} of magnitude $10 \mathrm{~N} / \mathrm{C}$. The magnitude of torque on the dipole plotted as a function of the angle between \vec{E} and the dipole moment \vec{p} is shown in the figure. How much work is needed by an external agent to turn the electric dipole from 30° to 60° with respect to \vec{E} field?
A) $+1.83 \times 10^{-1} \mathrm{~J}$
B) $-1.83 \times 10^{-1} \mathrm{~J}$
C) $+2.66 \times 10^{-1} \mathrm{~J}$
D) $-2.66 \times 10^{-1} \mathrm{~J}$
E) $+9.20 \times 10^{-2} \mathrm{~J}$

$$
\begin{aligned}
& W_{a}=\Delta U=U_{f}-U_{i} \\
&=-p E \cos \theta_{f}-\left(-p E \cos \theta_{i}\right) \\
& \approx p E\left(\cos \theta_{i}-\cos \theta_{f}\right) \\
& \tau=p E \sin \theta
\end{aligned} \text { at } \begin{aligned}
& \theta=90^{\circ} \quad \tau=p E=50 \times 10^{-2} N_{1} m \text { (from the figure) } \\
& \Rightarrow W_{a}=50 \times 10^{-2}\left(\cos 30^{\circ}-\cos 60^{\circ}\right) \\
& W_{a}=0.18 \mathrm{~J}=+1.8 \times 10^{-1} \mathrm{~J}
\end{aligned}
$$

