Q1

M2-142-01

Three charges, $q1 = q2 = 2.0 \ \mu\text{C}$ and $Q = 4.0 \ \mu\text{C}$, are fixed in their places as shown in Figure 1. Find the net electrostatic force on Q due to q1 and q2. [\hat{i} and \hat{j} are the unit vectors in the direction of x and y, respectively

A) (0.46 î) N B) (0.17 î) N C) (0.46 î+ 0.17 ĵ) N D) (0.17 î- 0.46 ĵ) N E) (0.17 î+ 0.32 ĵ) N $F_{2} = F_{1} = F_{2} = \frac{k |f_{1}||Q|}{r^{2}} = \frac{9 \times 10^{2} (2 \times 10^{6})(4 \times 10^{6})}{(0 \cdot 5)^{2}} = 0.22 \text{ N}$ $F_{1} = F_{1} = F_{2} = \frac{k |f_{1}||Q|}{r^{2}} = \frac{9 \times 10^{2} (2 \times 10^{6})(4 \times 10^{6})}{(0 \cdot 5)^{2}} = 0.22 \text{ N}$ $F_{1} = (F_{0} \times 10^{6})(1 + F_{1} + F_{2})(1 + (F_{1} + F_{2} + F_{2}))(1 + (F_{1} + F_{2} + F_{2}))(1 + (F_{1} + F_{2} + F_{2}))(1 + (F_{2} + F_{2} + F_{2}))$

Q2

Consider three distant spheres with charges $Q_{1i} = 1C$, $Q_{2i} = 2C$, and $Q_{3i} = 3C$. We allow these three charges to touch each other for a short time and then we separate them. The new charges of these spheres become $Q_{1f} = q$, $Q_{2f} = 0.5q$, and $Q_{3f} = 1.5q$. Find the value of q.

B) 1 C $Q_1 + Q_2 + Q_2$	
C) 3 C $1 + 2 + 3 = 6 + 0.56 + 0.56$	a
$D) \in C$	J.
$E + 4C \qquad \qquad 6 = 3q \implies q = 3$	20

Q3

M2-112-04

Three point charges are located at the corners of a square as shown in Figure 2. Find the value of Q if the electric field at the corner A is zero. Take $q = -7.00 \ \mu C$

A) 19.8 μC B) 14.0 μC C) 9.90 μC D) 4.95 μC E) 2.54 μC

Q4

M2-122-02

A positively charged sphere of mass 1.00 g falls from rest from a height of 5.00 m, in a uniform electric field of magnitude 1.00×10^4 N/C and is directed vertically downward. The sphere hits the ground with a speed of 20.0 m/s. What is the charge on the sphere?

+

A) + 3.02 μC B) - 1.00 μC C) + 5.23 μC D) - 5.23 μC E) + 1.00 μC

Q5

M2-132-04

An electron enters a region of uniform electric field $\vec{E} = (60 \ \hat{i})$ N/C with a velocity $\vec{v}_i = (50 \ \hat{i})$ km/s. How far does the electron travel in the first 2.0 ×10⁻⁹ s time interval after entering the field?

entering the field? A) 7.9 ×10⁻⁵ m B) 1.1 ×10⁻⁵ m C) 2.7 ×10⁻⁴ m D) 1.3 ×10⁻⁶ m E) 4.2 ×10⁻⁵ m Q6 $\begin{aligned}
\vec{E} = (6^{0} N/c) \hat{i} \\
\vec{E} = (5^{0} km/s) \hat{i} \\
\vec{R} = \frac{1}{\sqrt{2}} = \frac{3E}{m} = \frac{3E}{m} \\
\vec{R} = \sqrt{2}t + \frac{1}{2}(\frac{-eE}{m})t^{2} \\
\vec{R} = (5^{0} \times 1^{0})(2 \times 1^{0}) - \frac{1}{2}(\frac{1.60 \times 10^{-1}}{9.11 \times 10^{-51}}(2 \times 10^{0})^{2}) \\
\vec{R} = 7.9 \times 10^{5} M
\end{aligned}$

A certain electric dipole is placed in a uniform electric field \vec{E} of magnitude 10 N/C. The magnitude of torque on the dipole plotted as a function of the angle between \vec{E} and the dipole moment \vec{p} is shown in the figure. How much work is needed by an external agent to turn the electric dipole from 30⁰ to 60⁰ with respect to \vec{E} field?

A) +1.83 × 10⁻¹ J
B) -1.83 × 10⁻¹ J
C) +2.66 × 10⁻¹ J
D) -2.66 × 10⁻¹ J
E) +9.20 × 10⁻² J

$$\tau(10^{2} N.m)$$

 $50 \xrightarrow{0}{90} \xrightarrow{1}{180} \theta^{\circ}$
 $W_{a} = \Delta U = U_{f} - Ui$
 $= -pE\omega_{S}\theta_{f} - (-pE\omega_{S}\theta_{i})$
 $= pE(\omega_{S}\theta_{i} - \omega_{S}\theta_{f})$
 $\Sigma = pE = 50 \times 10^{2} N.m (from the figure)$
 $W_{a} = 50 \times 10^{2} (\omega_{S} 30 - \omega_{S} 60)$
 $W_{a} = 0.18 J = +1.8 \times 10^{2} J$