Consider an electron for which n=4, € =3, and
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PROBLEMS
8.1 Particle in a Three-Dimensional Box 10.

1. A particle of mass m moves in a three-dimensional box

6.

with edge lengths L;, Lo, and Ls. Find the energies of
the six lowest states if L} = L, Lo = 2L, and Lg = 2L.
Which of these energies are degenerate?

. An electron moves in a cube whose sides have a length

of 0.2 nm. Find values for the energy of (a) the ground
state and (b) the first excited state of the electron.

. A particle of mass m moves in a three-dimensional box

with sides L. If the particle is in the third excited level,
corresponding to 72 =11, find (a) the energy of the
particle, (b) the combinations of nj, ny, and ng that
would give this energy, and (c) the wavefunctions for
these different states.

. A particle of mass m moves in a two-dimensional box of

sides L. (a) Write expressions for the wavefunctions
and energies as a function of the quantum numbers 7;
and 7y (assuming the box is in the xy plane). (b) Find
the energies of the ground state and first excited state.
Is either of these states degenerate? Explain.

. Assume that the nucleus of an atom can be regarded as

a three-dimensional box of width 2 X 1071* m. If a pro-
ton moves as a particle in this box, find (a) the ground-
state energy of the proton in MeV and (b) the energies
of the first and second excited states. (c) What are the
degeneracies of these states?

Obtain the stationary states for a free particle in three
dimensions by separating the variables in Schrodinger’s
equation. Do this by substituting the separable form
W(r, 1) = Yn(x)Pa(y) P5(2) (t) into the time-dependent
Schrodinger equation and dividing each term by
W(r, t). Isolate all terms depending only on x from
those depending only on y, and so on, and argue that
four separate equations must result, one for each of the
unknown functions ¢, o, 3, and ¢. Solve the result-
ing equations. What dynamical quantities are sharp for
the states you have found?

. For a particle confined to a cubic box of dimension L,

show that the normalizing factor is A = (2/1)%2, the
same value for all the stationary states. How is this result
changed if the box has edge lengths Ly, Lo, and L3, all
of which are different?

. Consider a particle of mass m confined to a three-

dimensional cube of length L so small that the parti-
cle motion is relativistic. Obtain an expression for the
allowed particle energies in this case. Compute the
ground-state energy for an electron if L = 10 fm
(107% nm), a typical nuclear dimension.

Central Forces and Angular Momentum

. If an electron has an orbital angular momentum of

4.714 X 1073 J -5, what is the orbital quantum number
for this state of the electron?
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me = 3. Calculate the numerical value of (a) the orbital
angular momentum and (b) the z component of the
orbital angular momentum.

The orbital angular momentum of the Earth in its mo-
tion about the Sun is 4.83 X 103! kg- m?/s. Assuming it
is quantized according to Equation 8.16, find (a) the
value of € corresponding to this angular momentum
and (b) the fractional change in |L| as € changes from
{tol + 1.

8.5 Atomic Hydrogen and Hydrogen-like Ions

12.

13.

14.

15.

The normalized ground-state wavefunction for the
electron in the hydrogen atom is

L(Ly= .
P(r, 6, d) —E<a—o) e

where ris the radial coordinate of the electron and «,
is the Bohr radius. (a) Sketch the wavefunction versus
r. (b) Show that the probability of finding the elec-
tron between r and r+ dr is given by |(») [*4mr? dr.
(c) Sketch the probability versus r and from your
sketch find the radius at which the electron is most
likely to be found. (d) Show that the wavefunction as
given is normalized. (e) Find the probability of locating
the electron between r; = ay/2 and r9 = 3ay/2.
(a) Determine the quantum numbers € and my for the
He™ ion in the state corresponding to n = 3. (b) What
is the energy of this state?
(a) Determine the quantum numbers € and my for the
Li?" ion in the states for which n=1 and n = 2.
(b) What are the energies of these states?
In obtaining the results for hydrogen-like atoms in Sec-
tion 8.5, the atomic nucleus was assumed to be immo-
bile due to its much larger mass compared with that of
the electron. If this assumption is relaxed, the results
remain valid if the electron mass m is replaced every-
where by the reduced mass p of the electron—nucleus
combination:

. omM
e m+ M
Here M is the nuclear mass. (a) Making this replace-
ment in Equation 8.38, show that a more general ex-
pression for the allowed energies of a one-electron
atom with atomic number Zis

24 2
ukee* | Z
E,=— {—2}

202 | n

(b) The wavelength for the n = 3 to n = 2 transition of
the hydrogen atom is 656.3 nm (visible red light).
What is the wavelength of this same transition in singly
ionized helium? In positronium? (Note: Positronium is



16.

17.

18.

19.

20.

21.

22.

23.

an “atom” consisting of a bound positron-electron
pair. A positron is a positively charged electron.)
Calculate the possible values of the z component of an-
gular momentum for an electron in a d subshell.
Calculate the angular momentum for an electron in
(a) the 4d state and (b) the 6fstate of hydrogen.
A hydrogen atom is in the 6gstate. (a) What is the prin-
cipal quantum number? (b) What is the energy of the
atom? (c) What are the values for the orbital quantum
number and the magnitude of the electron’s orbital an-
gular momentum? (d) What are the possible values for
the magnetic quantum number? For each value, find
the corresponding z component of the electron’s or-
bital angular momentum and the angle that the orbital
angular momentum vector makes with the z-axis.
Prove that the nth energy level of an atom has degener-
acy equal to n%.
For fixed electron energy, the orbital quantum number
{ is limited to n — 1. We can obtain this result from a
semiclassical argument using the fact that the largest
angular momentum describes circular orbits, where all
the kinetic energy is in orbital form. For hydrogen-like
atoms, U(r) = —Zke?/r, and the energy in circular or-
bits becomes

ILP>  Zke?

E: - '
2mr?

r

Quantize this relation using the rules of Equations 8.16
and 8.38, together with the Bohr result for the allowed
values of 7, to show that the largest integer value of ¢
consistent with the total energy is €,,,x = n — 1.
Suppose that a hydrogen atom is in the 2s state. Taking
r= ag, calculate values for (a) os(ap), (b) |tho,(ag)|?
and (c) Py (ap).

The radial part of the wavefunction for the hydrogen
atom in the 2p state is given by

RQ[?(T) = Are” "2

where A is a constant and « is the Bohr radius. Using
this expression, calculate the average value of r for an
electron in this state.

A dimensionless number that often appears in atomic
physics is the fine-structure constant o, given by

_ ke?
fc
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. An electron outside a dielectric is attracted to the surface
by a force F= —A/x?, where x is the perpendicular dis-
tance from the electron to the surface and A is a con-
stant. Electrons are prevented from crossing the surface,
since there are no quantum states in the dielectric for
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where kis the Coulomb constant. (a) Obtain a numerical
value for 1/a. (b) In scattering experiments, the “size” of
the electron is the classical electron radius, ry = ke2/mec2.
In terms of a, what is the ratio of the Compton wave-
length, A = &/ mec, to the classical electron radius? (c) In
terms of «, what is the ratio of the Bohr radius, a, to the
Compton wavelength? (d) In terms of «, what is the ratio
of the Rydberg wavelength, 1/ R, to the Bohr radius?
Calculate the average potential and kinetic energies for
the electron in the ground state of hydrogen.

Compare the most probable distances of the electron
from the proton in the hydrogen 2s and 2p states with
the radius of the second Bohr orbit in hydrogen, 4ay.

6. Compute the probability that a 2s electron of hydrogen

will be found inside the Bohr radius for this state, 4a.
Compare this with the probability of finding a 2p elec-
tron in the same region.

Use the Java applet available at our companion

Web site (http://info.brookscole.com/mp3e
— QMTools Simulations — Problem 8.27) to display
the radial waveforms for the n =3 level of atomic
hydrogen. Locate the most probable distance from the
nucleus for an electron in the 3s state. Do the same for
an electron in the 3p and 3d states. What does the sim-
ple Bohr theory predict for this case?

Angular Variation of Hydrogen Wavefunctions.

Use the Java applet of the preceding problem
to display the electron clouds for the n = 4 states of
atomic hydrogen. Observe the distinctly different sym-
metries of the s, p, d, and forbitals in the case my = 0.
Which of these orbitals is most extended, that is, in
which orbital is the electron likely to be found furthest
away from the nucleus? Explore the effect of the mag-
netic quantum number my on the overall appearance
and properties of the n = 4 orbitals. Can you identify
any trends?
As shown in Example 8.9, the average distance of the
electron from the proton in the hydrogen ground state
is 1.5 bohrs. For this case, calculate Ay, the uncertainty
in distance about the average value, and compare it
with the average itself. Comment on the significance of
your result.
Calculate the uncertainty product ArAp for the 1s elec-
tron of a hydrogen-like atom with atomic number Z.
(Hint: Use {p) = 0 by symmetry and deduce (p?) from
the average kinetic energy, calculated as in Problem 24.)

them to occupy. Assume that the surface is infinite in ex-
tent, so that the problem is effectively one-dimensional.
Write the Schrodinger equation for an electron outside
the surface x > 0. What is the appropriate boundary con-
dition at x = 0? Obtain a formula for the allowed energy
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levels in this case. (Hint: Compare the equation for ¢(x)
with that satisfied by the effective one-dimensional wave-
function g(r) = rR(r) for hydrogen-like atoms.)
The Spherical Well. The three-dimensional
analog of the square well in one dimension,
the spherical well is commonly used to model the po-
tential energy of nucleons (protons, neutrons) in an
atomic nucleus. It is defined by a potential U(r) that
is zero everywhere inside a sphere and takes a large
(possibly infinite) positive value outside this sphere.
Use the Java applet available at our companion Web
site  (http://info.brookscole.com/mp3e — QMTools
Simulations — Problem 8.32) to find the ground-
state energy for a proton bound to a spherical well of
radius 9.00 fm and height 30.0 MeV. Is the ground
state an s state? Explain. Also report the most proba-
ble distance from the center of the well for this
nucleon.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

33.

34.

QUANTUM MECHANICS IN THREE DIMENSIONS

Use the Java applet of Problem 32 to find the

first three excited-state energy levels for the
spherical well described there. What orbital quantum
numbers ¢ describe these states? Determine the degen-
eracy of each excited level and display the probability
clouds for the degenerate wavefunctions.
Example 8.9 found the most probable value and the
average value for the distance of the electron from the
proton in the ground state of a hydrogen atom. For
comparison, find the median value as follows. (a) Derive
an expression for the probability, as a function of 7,
that the electron in the ground state of hydrogen will
be found outside a sphere of radius r centered on the
nucleus. (b) Find the value of r for which the probabil-
ity of finding the electron outside a sphere of radius ris
equal to the probability of finding the electron inside
this sphere. (You will need to solve a transcendental
equation numerically.)





