KING FAHD UNIVERSITY OF PETROLEUM & MINERALS PHYSICS DEPARTMENT PHYS 201- Term 112 QUIZ #2 - CHAPTER 32

Wednesday 22 February 2012

N	1	m	0	

Key

ID#:

An ac generator with $E_{\rm m}$ = 120 V and operating at 200 Hz causes oscillations in a series RL circuit having R = 100 Ω and L = 0.5 H.

- (a) Find the impedance.
- (b) Find the current amplitude.
- (c) Find the voltage amplitude across the resistor.
- (d) Find the voltage amplitude across the inductor.
- (e) Find the phase constant for this circuit.
- (f) Write the expression of the oscillating current as s function of time in the circuit.
- (g) Draw the phasor diagram for this circuit.

(a)
$$Z = \sqrt{R^2 + (L \omega_8)^2} = \sqrt{(100)^2 + (0.5 \times 2 \times 11 \times 200)^2} = \sqrt{(100)^2 + (628.3)^2}$$

$$Z = 636 \Omega$$

b)
$$T = \frac{\mathcal{E}_m}{Z} = \frac{120}{636} = 0.189 A$$

e)
$$\phi = \tan^{-1}\left(\frac{x_L}{R}\right) = \tan^{-1}\left(\frac{\omega_L}{R}\right) = \tan^{-1}\left(\frac{628.3}{100}\right) = \tan^{-1}\left(6.28\right)$$

$$\left[\phi = 81^{\circ}\right] = \left[1.41 \text{ rad}\right]$$

