25-4 Capacitors in Parallel and in Series m2-041

In figure 6, a capacitor of capacitance C = 9.0 micro-F is charged to a potential difference Vo = 10.0 volts. The charging battery is disconnected and the capacitor is connected to uncharged capacitor of unknown capacitance Cx. The potential difference across the combination is reduced to V = 3 volts. Find the value of Cx.

- (a)3.0 micro-F.
- (b)42 micro-F.
- (c)11 micro-F.
- (d)8.0 micro-F.
- (e)21 micro-F.

$$V = \frac{Q_1}{C} = \frac{Q_2}{Q_1} = 3$$

$$Q_1 = Q_1 - Q_2 \Rightarrow$$

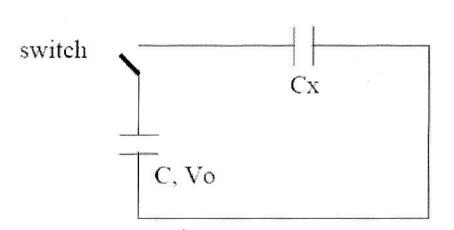


Figure (6)

$$Q_1 = 90 - Q_2 \Rightarrow \frac{90 - Q_2}{C} = \frac{Q_2}{Q_x} = 3 \Rightarrow Q_2 = 90 - 27 = 63 + C$$

$$\frac{63 + C}{C_x} = 3 + C \Rightarrow C_x = 21 + F$$
Answer E