Figure 23-38 shows cross sections through two large, parallel, nonconducting sheets with identical distributions of positive charge with surface charge density $\sigma = 1.77 \times 10^{-23}$

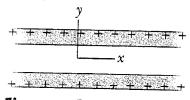


Fig. 23-38 Problem 32.

 10^{-22} C/m². In unit-vector notation, what is \vec{E} at points (a) above the sheets, (b) between them, and (c) below them?

In Fig. 23-41, two large, metal plates are parallel and close to each other. On their inner faces, the plates have excess surface charge densities of opposite signs and magnitude 7.00×10^{-22} C/m². In unit-vector notation, what is the electric field at points (a) to the left of the plates, (b) to the

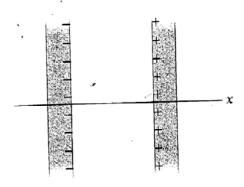
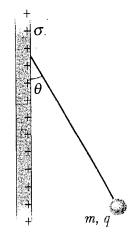



Fig. 23-41 Problem 35.

Two large metal plates of area 1.0 m^2 face each other. They are 5.0 cm apart and have equal but opposite charges on their inner surfaces. If the magnitude E of the electric field between the plates is 55 N/C, what is the magnitude of the charge on each plate? Neglect edge effects.

$$E = \frac{5}{5} \Rightarrow 5 = \frac{5}{5} = \frac{5}{5} \times \frac{8.85 \times 15^{12}}{5} = \frac{4.9 \times 15^{10}}{m^2}.$$

••39 In Fig. 23-43, a small, no conducting ball of mass m = 1.0 mg and charge $q = 2.0 \times 10^{-8}$ C (distributed uniformly through its volume) hangs from an insulating thread that makes an angle $\theta = 30^{\circ}$ with a vertical, uniformly charged nonconducting sheet (shown in cross section). Considering the gravitational force on the ball and assuming the sheet extends far vertically and

Fig. 23-43 Problem 39.

into and out of the page, calculate the surface charge density σ of the sheet. **ssm**

$$E = \frac{\sigma}{2\epsilon}$$

$$T \sin \theta - \frac{\sigma}{2\epsilon} q = 0 - (1)$$

$$T \cos \theta - mq = 0 \quad (2)$$

$$\tan \theta = \frac{q\sigma}{2\epsilon} m_q \Rightarrow \sigma = \frac{2\epsilon m_q}{q}$$

$$\sigma = 5 \times 10^9 \text{ G/m}^2$$

An unknown charge sits on a conducting solid sphere of radius 10 cm. If the electric field 15 cm from the center of the sphere has the magnitude 3.0 × 10³ N/C and is directed radially inward, what is the net charge on the sphere?

Since the E is radially inward

negative. The charge is distributed on the Surface of the sphere (conductor).

The charge is negative!

extra:

E inside = 0. This is a conductor.

find E at r= 5 cm! E = 0

r= 7 cm! E=0

(••49) In Fig. 23-50, a solid sphere of radius a = 2.00 cm is concentric with a spherical conducting shell of inner radius b = 2.00a and outer radius c = 2.40a. The sphere has a net uniform charge $q_1 = +5.00$ fC; the shell has a net charge q_2 = $-q_1$. What is the magnitude of the electric field at radial distances (a) r = 0, (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = 1.50a2.30a, and (f) r = 3.50a? What is the net charge on the (g) inner and (h) outer surface of the shell?

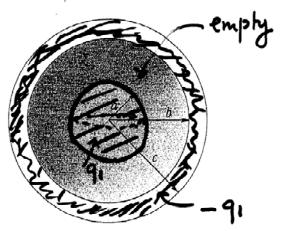
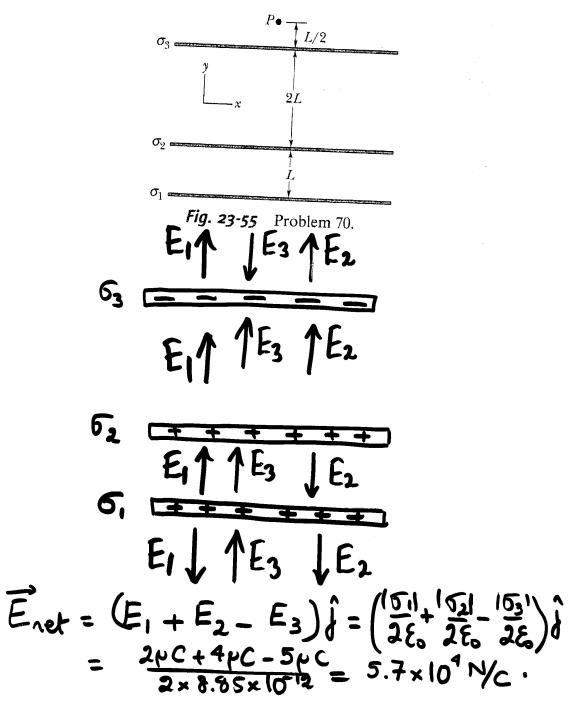



Fig. 23-50 Problem 49.

a)
$$E_1 = \frac{k q_1}{a_3} \Gamma = \frac{k q_1}{a_3} (0) = 0$$
b) $E_2 = \frac{k q_1}{a_3} \Gamma = \frac{k q_1}{a_3} \frac{q}{2} = \frac{k q_1}{a_3} = 0.056 \frac{N}{C}$
c) $E_3 = \frac{k q_1}{a_3} \Gamma = \frac{k q_1}{a_3} \alpha = \frac{k q_1}{a_3} = 0.112 \frac{N}{C}$
d) $E_4 = \frac{k q_1}{r^2} = \frac{k q_1}{(1.5a)^2} = 0.05 \frac{N}{C}$
e) $E_5 = 0$ (inside the conductor)
f) $E_6 = \frac{k (q_1 + q_2)}{r^2} = \frac{k (q_1 - q_1)}{r^2} = 0$
g) $Q_{int} = -q_1$
h) $Q_{out} = 0$

Figure 23-55 shows, in cross section, three infinitely large nonconducting sheets on which charge is uniformly spread. The surface charge densities are $\sigma_1 = +2.00 \ \mu\text{C/m}^2$, $\sigma_2 = +4.00 \ \mu\text{C/m}^2$, and $\sigma_3 = -5.00 \ \mu\text{C/m}^2$, and distance $L = 1.50 \ \text{cm}$. In unit-vector notation, what is the net electric field at point P?

