\#19. $R_{1}=100 \Omega, R_{2}=50 \Omega 1$
tries have emfs $\mathscr{E}_{1}=6.0 \mathrm{~V}$,
$\mathscr{E}_{2}=5.0 \mathrm{~V}$, and $\mathscr{E}_{3}=4.0 \mathrm{~V}$. Find (a) the current in resistor 1 , (b) the current in resistor 2 , and (c) the potential difference between points a and b. Ssm

Fig. 27-34 Problem 19.
a)

$$
\begin{aligned}
-I_{1} R_{1}+\varepsilon_{2}=0 \Rightarrow I_{1} & =\frac{\varepsilon_{2}}{R_{1}}=\frac{5}{100} \\
& =0.05 \mathrm{~A} .
\end{aligned}
$$

b)

$$
\begin{aligned}
& -I_{2} R_{2}+\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}=0 \\
& \quad I_{2}=\frac{\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}}{R_{2}}=\frac{-3}{50}=-0.06 \mathrm{~A} .
\end{aligned}
$$

c)

$$
\begin{aligned}
V_{b}-V_{a} & =-\varepsilon_{2}-\varepsilon_{3} \\
& =-5-4=-9 V
\end{aligned}
$$

or $V_{b}-V_{a}=-I_{1} R_{1}-\varepsilon_{3}=-0.05 \times 100-4$

$$
=-9 \vee
$$

or $V_{b}-V_{a}=-\varepsilon_{1}-I_{2} R_{2}=-6-3=-9 \mathrm{~V}$
(48) Switch S in Fig. 27-52 is closed at time $t=0$, to begin charging an initially uncharged capacitor of capacitance $C=$ $15.0 \mu \mathrm{~F}$ through a resistor of resistance $R=20.0 \Omega$. At what time is the potential across the capacitor equal to that across

Fig. 27-52 Problems 48 and 69. the resistor?

$$
\begin{aligned}
& V_{c}= \varepsilon\left(1-e^{-\frac{t}{R c}}\right) \\
& V_{R}= I R=\underbrace{R I_{\text {max }}}_{\varepsilon} e^{-\frac{t}{R c}} \\
& V_{c}= V_{R} \\
& \Rightarrow \quad \varepsilon\left(1-e^{-\frac{t}{R c}}\right)=\varepsilon e^{-\frac{t}{R c}} \\
& 2 e^{-t / R c}=1 \\
& e^{-t / R c}=\frac{1}{2} \Rightarrow-\frac{t}{R c}=\ln \left(\frac{1}{2}\right) \\
& t= R C \ln 2=-\ln 2 \\
& t=0.69 R C=2.08 \times 10^{-4} \mathrm{~s}
\end{aligned}
$$

(46) In an $R C$ series circuit, $\mathscr{E}=12.0 \mathrm{~V}, R=1.40 \mathrm{M} \Omega$, and $C=1.80 \mu \mathrm{~F}$. (a) Calculate the time constant. (b) Find the maximum charge that will appear on the capacitor during charging. (c) How long does it take for the charge to build up to $16.0 \mu \mathrm{C}$?

a) $\tau=R C=2.52 \mathrm{~s}$.
b) $q_{\text {max }}=C \varepsilon=21.6 p C$ (after a longtime)
c)

$$
\begin{aligned}
q(t) & =q_{\max }\left(1-e^{-t / R c}\right) \\
16 \mu c & =21.6 \mu c\left(1-e^{-t / 2.52}\right) \\
0.74 & =1-e^{-t / 2.52} \\
e^{-t / 2.52} & =1-0.74=0.26 \\
-\frac{t}{2.52} & =\ln (0.26)=-1.35 \\
t & =3.4 \mathrm{~s}
\end{aligned}
$$

(44) A capacitor with initial charge q_{0} is discharged through a resistor. What multiple of the time constant τ gives the time the capacitor takes to lose (a) the first one-third of its charge and (b) two-thirds of its charge?
charge
remaining

$$
R c=\tau
$$

\uparrow time constant. It has unit of sec .
a)

$$
\begin{aligned}
\frac{2 q_{0}}{3} & =90 e^{-t / R c} \\
\ln \left(\frac{2}{3}\right) & =-\frac{t}{R C} \\
t=R C \ln \left(\frac{3}{2}\right) & =0.41 \underbrace{R C}_{\tau}
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{1}{3} q_{0} & =q_{0} e^{-t / R c}=0.41 \tau \\
t & =R C \ln 3=1.1 R c=1.1 \tau
\end{aligned}
$$

$0 \cdot 30$ In Fig. 27-42, $R_{1}=100$ $\Omega, R_{2}=R_{3}=50.0 \Omega, R_{4}=$ 75.0Ω, and the ideal battery has emf $\mathscr{E}=6.00 \mathrm{~V}$. (a) What is the equivalent resistance? What is i in (b) resistance 1 , (c) resistance 2 , (d) resistance 3 , and (e) resistance 4 ?

Fig. 27-42 Problems 30 and 36 .
a)

b) $I=\frac{\varepsilon}{R_{e q}}=0.05 \mathrm{~A}$
c) $V_{2}=I_{2} R_{2} \Rightarrow I_{2}=\frac{V_{2}}{R_{2}}=\frac{1}{50}=0.02 \mathrm{~A}$.
d) $I_{3}=I_{2}=0.02 \mathrm{~A}$.
e) $I_{4}=\frac{V_{4}}{R_{4}}=\frac{1}{75}=0.01 \mathrm{~A}$.
\#19. $R_{1}=100 \Omega, R_{2}=50 \Omega_{1}$
tories have emfs $\mathscr{g}_{1}=6.0 \mathrm{~V}$, $\mathscr{C}_{2}=5.0 \mathrm{~V}$, and $\mathscr{E}_{3}=4.0 \mathrm{~V}$. Find (a) the current in resistor 1, (b) the current in resistor 2 and (c) the potential difference between points a and b. ssm

Fig. 27-34 Problem 19.
a)

$$
\begin{aligned}
-I_{1} R_{1}+\varepsilon_{2}=0 \Rightarrow I_{1} & =\frac{\varepsilon_{2}}{R_{1}}=\frac{5}{100} \\
& =0.05 \mathrm{~A} .
\end{aligned}
$$

b)

$$
\begin{aligned}
& -I_{2} R_{2}+\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}=0 \\
& \quad I_{2}=\frac{\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}}{R_{2}}=\frac{-3}{50}=-0.06 \mathrm{~A}
\end{aligned}
$$

c)

$$
\begin{aligned}
V_{b}-V_{a} & =-\varepsilon_{2}-\varepsilon_{3} \\
& =-5-4=-9 V
\end{aligned}
$$

or $V_{b}-V_{a}=-I_{1} R_{1}-\varepsilon_{3}=-0.05 \times 100-4$ $=-9 \mathrm{~V}$
or $V_{b}-V_{a}=-\varepsilon_{1}-I_{2} R_{2}=-6-3=-9 V$
(649) A capacitor with an initial potential difference of 100 V is discharged through a resistor when a switch between them is closed at $t=0$. At $t=10.0 \mathrm{~s}$, the potential difference across the capacitor is 1.00 V . (a) What is the time constant of the circuit? (b) What is the potential difference across the capacito at $t=17.0 \mathrm{~s}$?
a)

$$
\begin{aligned}
& V_{c}^{(t)}=\frac{q(t)}{c}=\frac{q_{0}}{c} e^{-t / R c}=V_{0} e^{-t} \\
& 1=100 e^{-\frac{10}{\tau}} \\
& -\frac{10}{\tau}=\ln \left(\frac{1}{100}\right)=-\ln 100 \\
& \tau=\frac{10}{\ln 100}=2.17 \mathrm{~s} .
\end{aligned}
$$

b)

$$
V_{c}=100 e^{-\frac{17}{2.17}}=0.04 \mathrm{~V}
$$

