KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #8- CHAPTER 24

NAME:

Key

SECTION#

Over a certain region of space, the electric potential is give by: $V(x,y) = 2x^2 + 5y^2 - 2xy$. Find the magnitude and direction of the electric field at points (2 m, 1 m).

$$E_x = -\frac{\partial V}{\partial x} = -(4x - 2y)$$

$$E_{y} = -\frac{3V}{3y} = -(10y - 2x)$$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #8- CHAPTER 24

NAME: Key ID# SECTION# 17

An electron starts from rest at a point 10 cm from a positively charged conducting plate, with a surface charge density $\sigma = +1 \times 10^{-9}$ C/m. The electron is attracted to the plate until it collides with the plate. With what speed will the electron collide with the plate?

$$\Delta K + \Delta U = 0$$

$$\Delta U = 9 \Delta V = -9 E d \cos 180^{\circ} = +9 E d$$

$$\Delta K = -\Delta U \Rightarrow \Delta K = -9 E d$$

$$\Delta K = -9$$

$$= \sqrt{\frac{-2 \times (-1.6 \times 10^{19}) \times 1 \times 10^{9} \times 0.1}{8.85 \times 10^{12} \times 9.1 \times 10^{31}}}$$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #8- CHAPTER 24

NAME:

Key

ID#

SECTION#

18

Consider two concentric spherical shells. The first one has a charge Q=20~nC and radius R1=20~cm the other has a charge q=-10~nC and radius R2=10~cm. Take the potential to be zero at infinity. Find the net potential at

(a) r = 25 cm

$$V = k \left(\frac{Q}{r} + \frac{q}{r} \right) = 360V$$

(b) r = 20 cm

$$V = k\left(\frac{Q}{R} + \frac{q}{R}\right) = 450V$$

(c) r = 15 cm

$$V = k\left(\frac{Q}{R_1} + \frac{q}{r}\right) = 300 \text{ V}$$

(d) r = 10 cm

$$V = k \left(\frac{Q}{R_1} + \frac{q}{R_2} \right) = 0$$

(e) r = 5 cm.

$$V = k \left(\frac{Q}{R_1} + \frac{q}{R_2} \right) = 0$$