KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT OUIZ #6- CHAPTER 22

NAME: Key ID# SECTION# [(

Consider the three charges arranged as shown in the figure. Find the electric field at the origin.

Take q = 20 nC, a = 10 cm and b = 5.0 cm.

$$E_{1} = \frac{kq}{a^{2}} = \frac{9 \times 10^{9} \times 20 \times 10^{9}}{(0.1)^{2}}$$

$$= 18000 \text{ N/c}$$

$$E_{2} = \frac{\text{kg}}{(a+b)^{2}} = \frac{9 \times 10^{9} \times 20 \times 10^{9}}{(0.15)^{2}} = \frac{8000 \text{ N/c}}{(0.15)^{2}}$$

$$E_3 = \frac{kq}{a^2} = \frac{18000 \text{ N/c}}{}$$

$$\vec{E}_{\text{net}} = \vec{E}_1 + \vec{E}_3 - \vec{E}_2 = 28000 \hat{j} \text{ N/c}$$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #6- CHAPTER 22

NAME: Rey ID# SECTION# 17

In figure the, a small ball of mass m = 5.0 g is hanging from a fixed point by a non-conducting string of length 1.00 m. The ball carries a charge q = 50 nC. The mass of the string is negligible. An electric field E with magnitude $E = 1.0 \times 10^6$ N/C, in the positive x-direction, causes the ball to be in an equilibrium position with an angle Theta. Find the angle Theta. [Take $g = 9.80 \text{ m/s}^2$] $\frac{17}{8} = q E - T \sin \theta = 0 \implies T \sin \theta = q E - 11$ $\frac{17}{8} = q E - T \sin \theta = 0 \implies T \sin \theta = q E - 11$ $\frac{17}{9} = \frac{1}{9} = \frac{1}{9}$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT OUIZ #6- CHAPTER 22

NAME: Key ID# SECTION# 18

An electron, traveling with initial velocity 1×10^5 i m/s, enters a region of a uniform electric field given by $E = 4.0 \times 10^3$ i N/C.

(a) What is the deceleration of the electron?

$$qE=Ma \Rightarrow a=\frac{qE}{m}=\frac{(1.6\times10^{19})(4\times10^3)}{9.1\times10^{31}}=\overline{7\times10^{14}}$$

$$F = \frac{1.6\times10^{19})(4\times10^3)}{9.1\times10^{31}}=\overline{7\times10^{14}}$$

(b) Determine the distance travelled by the electron before coming to rest.

$$x = \frac{-\frac{\sqrt{2}}{2a}}{2a} = -\frac{(1 \times 10^{5})^{2}}{2 \times (-7 \times 10^{4})} = \frac{7.1 \times 10^{6}}{1.1 \times 10^{6}}$$

$$x = 7 \text{ pm}$$

(c) Determine the time it takes for the electron to come to rest momentarily.

$$\frac{1 \times 10^{5}}{1 \times 10^{5}} = \sqrt{\frac{1 \times 10^{5}}{1 \times 10^{5}}} = \sqrt$$