KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #5- CHAPTER 20

NAME: Key ID# SECTION#

A Carnot engine (ideal engine) absorbs heat at 527 0 C and rejects heat at 127 0 C. The heat absorbed produces useful mechanical work at the rate of 750 Watts.

(a) What is the efficiency of the engine?

$$\mathcal{E}_{c} = 1 - \frac{T_{c}}{T_{H}} = 1 - \frac{800}{400} = 0.5 \text{ or } 50\%$$

(b) What is the heat absorbed from the hot reservoir in 10 min?

$$\mathcal{E}_{c} = \frac{W}{Q_{H}} \Rightarrow \mathcal{E}_{c} = \frac{W/t}{Q_{H}/t} = \frac{P}{Q_{H}/t}$$

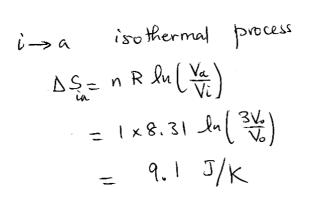
$$\Rightarrow \mathcal{Q}_{H} = \frac{P}{E_{c}} = \frac{750}{0.5} = 1500 \text{ J/s}$$
in 10 minutes $Q_{H} = 1500 \times 600 = 900 \text{ kJ}$

(c) What is the heat expelled to the cold reservoir in 10 min?

$$\frac{Q_{H}}{|Q_{L}|} = \frac{\overline{I}_{H}}{\overline{I}_{L}} \Rightarrow |Q_{L}| = \frac{Q_{H}}{\overline{I}_{H}} = \frac{900 \text{ kJ} \times \frac{1}{2}}{2}$$

$$= 450 \text{ kJ}$$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #5- CHAPTER 20


NAME:

Key

ID#

SECTION#

One mole of a monatomic ideal gas is taken from an initial state to a final state (f) as shown in figure 1. The curved line is an isotherm. Calculate the increase in entropy of the gas for this process.

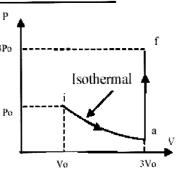


Figure 1

a -> f iso choric process

$$\Delta S_{=} = n C_{U} ln \left(\frac{T_{f}}{T_{a}}\right) = 1 \times \frac{3}{2} R \times ln \left(\frac{P_{f}}{P_{a}}\right)$$

$$\Delta S_{=} 1 \times \frac{3}{2} \times 8.31 \times ln \left(\frac{3P_{f}}{P_{a}}\right)$$

$$\Delta S_{=} 1 \times \frac{3}{2} \times 8.31 \times ln \left(\frac{3P_{f}}{P_{a}}\right)$$

$$T_i = \frac{P_i V_i}{AR} - T_a = \frac{P_a V_a}{AR} \Rightarrow P_a = \frac{P_i V_i}{V_a} = \frac{P_o V_o}{3V_o} = \frac{P_o}{3}$$

$$\Delta S_{if} = \frac{3}{2} \times 8.31 \ln(9) = 27.3 \text{ J/K}$$

$$\Delta S_{if} = 9.1 + 27.3 = \boxed{36.4 \text{ J/K}}$$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #5- CHAPTER 20

NAME:

ID#

SECTION#

You mix two samples of water, A and B. Sample A is 100 g at 20 °C and sample B is also 100 g but at 80 0 C. (c_{water} = 4186 J/kg K)

(a) Calculate the equilibrium temperature of the system.

$$Q_1 + Q_2 = 0$$

 $em_A C_w (T_f - 20) + m_B C_w (T_f - 80) = 0$
 $2T_f = 100 \implies T_f = 50^{\circ}C = 323 \text{ K}$

(b) Calculate the change in the entropy of sample A.

$$\Delta S_{A} = m_{A} C_{W} \ln \left(\frac{T_{f}}{T_{c}} \right) = 0.1 \times 4186 \times \ln \left(\frac{323}{293} \right)$$

$$\Delta S_{A} = 40 J/K \qquad \left(\begin{array}{c} \text{gained heat} \\ \Delta S > 0 \end{array} \right)$$

(c) Calculate the change in the entropy of the sample B. $AS_{B} = M_{B} C_{w} ln \left(\frac{T_{f}}{T_{i}}\right) = 0.1 \times 4186 ln \left(\frac{323}{353}\right)$ DSB = 37 J/K (hot heat)

(d) Calculate the change in entropy of the system.