KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #4- CHAPTER 19

NAME: Key ID# SECTION#

Two moles of an ideal monatomic gas expands adiabatically.

(a) If the initial temperature is 500 K and is three times the final temperature, by what factor does the volume change?

$$T_{i} V_{i}^{\delta-1} = T_{f} V_{f}^{\delta-1}$$
 $V_{f} = \frac{C_{f}}{C_{V}} = \frac{5}{3} = 1.67$
 $T_{i} = 500K$ $T_{f} = \frac{T_{i}}{3} = 166K$
 $V_{f} = \left(\frac{T_{i}}{T_{f}}\right)^{\frac{1}{64}} = \left(3\right)^{\frac{1}{0.67}} = 5.15$

(b) What is the work done by the gas?

$$W = - \Delta E_{int} = - n C_{V} \Delta T$$

$$= - 2 \times \frac{3}{2} \times R (T_{f} - T_{i})$$

$$= - 3 \times 8.31 \times (165 - S_{00})$$

$$W = 8310 J$$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #4- CHAPTER 19

NAME: Key ID# SECTION# 17

Two moles of hydrogen (diatomic) gas are heated from 100 °C to 400 K. How much heat is transferred to the gas if the process is

(a) isobaric?

$$Q = n C_p \Delta T = n \frac{7}{2} R (T_f - T_i)$$

= $2 \times \frac{7}{2} \times 8.31 (400 - 373) = 1570 J$

(b) isochoric?

$$Q = n C_V \Delta T = n \frac{5}{2} R (T_f - T_i)$$

= $2 \times \frac{5}{2} \times 8.31 \times (400 - 373) = 1122 J$

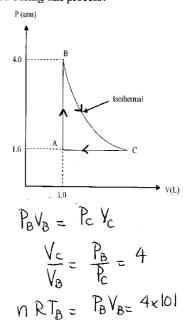
(c) adiabatic?

$$Q = 0$$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #4- CHAPTER 19

NAME:	Key	ID#	SECTION#

One mole of an ideal diatomic gas undergoes the thermodynamic process shown in the figure.


(a) If the process BC is isothermal, what is the heat transferred during this process?

$$\Delta E_{int} = Q - W = 0$$

$$Q = W = nRT ln\left(\frac{V_c}{V_c}\right)$$

$$Q = nRT_B ln\left(\frac{V_c}{V_B}\right)$$

$$Q = 4 \times 101 \times ln(4) = 560 \text{ J}$$

(b) What is the change in internal energy for this isothermal process?

DEN = 0 since the process is isothermal