- 1. A wave is represented by the equation $y = 0.2 \sin 0.4\pi(x 60t)$, where all distances are measured in centimeters and time in seconds. Find:
 - a) The amplitude
 - b) The wavelength
 - c) The speed
 - d) The frequency of the wave.
 - e) What is the displacement at x = 5.5 cm and t = 0.02 sec?
- (4) A = 0,2cm

(b)
$$k = \frac{2\pi}{\lambda} \implies \lambda = \frac{2\pi}{k} = \frac{2\pi}{0.4\pi} = 5 \text{ cm} = 0.05 \text{ m}$$

(c)
$$v = \frac{\omega}{R} = \frac{60 * 0.4 \text{ TT}}{1 * 0.4 \text{ TT}} = \frac{60 \text{ cm/s}}{60 \text{ cm/s}} = 0.6 \text{ m/s}$$

(d)
$$v = \lambda f \rightarrow f = \frac{v}{\lambda} = \frac{60 \text{ cm/s}}{5 \text{ cm}} = 12 \text{ Hz}$$

(e)
$$y = 0.2 \sin \left\{0.4\pi \left[\left(5.5\right) - 60* \left(0.02\right) \right] \right\} = -0.15 \text{ cm}$$

- 2. A transverse traveling wave on a stretched wire has amplitude of 5 cm, a frequency of 55.1 Hz, and travels with speed of 50 m/s.
 - a) Write an equation in SI units of the form $y = A \sin(kx wt)$ for this wave.
 - b) If the mass per unit length of this wire is 40 g/m, find the tension in the wave.
 - c) Determine the power transmitted to the wave.
 - d) What is the magnitude of the maximum transverse velocity?
 - e) What is the magnitude of the maximum transverse acceleration?

(a)
$$\omega = 2\pi f = 2\pi (55.1) = 346.2 \text{ rad/s}$$

$$v = \frac{\omega}{k} \Rightarrow -k = \frac{\omega}{v} = \frac{346.2}{50} = 6.92 \text{ m}^{-1}$$

$$y(z,t) = 0.05 \sin \left(6.92 \times -346.2 t\right)$$

(b)
$$y = 40 \text{ g/m}$$

$$v = \sqrt{\frac{1}{y}} \implies T = v^2 y = (50)^2 (40 \times 10^{-3}) = 100 \text{ N}$$

(c)
$$P = \frac{1}{2} \mu \omega^2 A^2 \omega = \frac{1}{2} (40 \times 10^3) (346.2)^2 (0.05)^2 (50)$$

= 299.6W

- 3. A transverse harmonic wave, with an amplitude of 2.0 cm, travels in the negative x direction with a speed of 30 m/s. At t = 0, a particle on the string at x = 0 has a displacement of 1.0 cm and an acceleration a = -0.32m/s².
 - a) What is the period of the wave?
 - b) Determine the phase constant Φ.

(a)
$$y(x_1t) = A \sin(kx + \omega t - \phi)$$

 $a(x_1t) = -A \omega^2 \sin(kx + \omega t - \phi) = -\omega^2 y(x_1t)$
 $a(0,0) = -A \omega^2 \sin(-\phi) = A \omega^2 \sin\phi = -0.32 \text{ m/s}^2 -(1)$

$$y(0,0) = A \sin(-\phi) = -A \sin \phi = 0.01 m$$
 —(2)

$$\frac{(2)}{(1)} \Rightarrow \frac{0.32}{0.01} = \omega^2 \Rightarrow \omega = 5.7 \text{ rad/s}$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{5.7} = 1.10 \text{ sec}$$

(b) substitute the value of w in (1)

$$(0.02)(5.7)^2$$
 sin $\phi = -0.32$

$$\sin \phi = -0.49$$