Old Exam Questions Ch. 3

T072:

Q5.Vectors \vec{a} , \vec{b} , and \vec{c} are related through equations $\vec{a} + \vec{b} = \vec{c}$ and $\vec{a} - \vec{b} = 5.0 \vec{c}$. If $\vec{c} = 3.0 \hat{i} + 4.0 \hat{j}$, what is the magnitude of vector \vec{a} ? (Ans: 15)

Q6. Three vectors \vec{F} , \vec{v} and \vec{B} are related through $\vec{F} = 5.0 (\vec{v} \times \vec{B})$. If vector $\vec{v} = 3.0 \hat{i} - 5.0 \hat{j}$ and $\vec{B} = -2.0 \hat{k}$, then vector \vec{F} is: (Ans: $50 \hat{i} + 30 \hat{j}$)

Q7. A vector \vec{A} of magnitude 20 is added to a vector \vec{B} of magnitude 25. The magnitude of the vector $\vec{A} + \vec{B}$ can be: (Ans: 12)

Q8. Vectors \vec{F} and \vec{G} are defined as $\vec{F} = 3.0 \hat{i} + 4.0 \hat{j}$, and $\vec{G} = -\hat{i} + \hat{j}$. Find the component (projection) of vector \vec{G} along the direction of vector \vec{F} . (Ans: 0.20)

T071:

Q8. Two vectors are given by: $\vec{P} = -1.5\hat{i} + 2.0\hat{j}$, $\vec{Q} = 1.0\hat{j}$. The angle that the vector $2\vec{P} - \vec{Q}$ makes with the **positive** *x*-axis is: (A: 135°)

Q9. A man walks 5.0 km due North, then 13 km 22.6° South of East, and then 12 km due West. The man is finally at: (Ans: where he started)

<u>T062:</u>

Q7. *A* and *B* are two perpendicular vectors: A=3.0 i and B=2.0 j The magnitude of is: A-2B (Ans: 5.0)

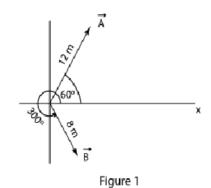
Q8. The angle between vector A=3.00 i+ 4.00j and the negative y-axis is: (A: 143°)

Q9. Three vectors are given as: A=-3.0i; B=-5.0 k and C=2.0 j. The value of $A.(B \ge C)$ is: (Ans -30)

<u>T061:</u>

Q6. A vector in the xy plane has a magnitude of 25 m and an x component of +12 m and a positive y component. The angle it makes with the positive y axis is: (Ans: 29°)

Q7. If A = (2.0 i - 3.0j)m and B = (1.0i - 2.0j)m, then A - 2B = (Ans: (1.0j) m)


Q8. Two vectors and *A* and *B* have magnitudes of 10 m and 15 m respectively. The angle between them is 65° . The component (projection) of *B* along *A* is: (Ans: 6.3 m)

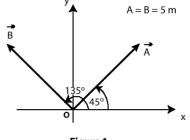
T052:

Q6. If A = i + j and B = i - j then: (Ans: the angle between A and B must be 90°)

Q7. Let A=2.0*i*+ 3.0 *k* and B=2.0 *i*+ *k*. The vector D=(A-B)xA is: (Ans: -8.0 *j*)

Q8. In Fig 1, A(12m , 60°) and B=(8m ,300°). Then x component of (*A*-*B*) is: (Ans: 2 m)

<u>T051:</u>


Q6. Three vectors A, B, and C are such that: C = A+B, B=5i and C=5j. Find the angle between A and B (Ans: 135°)

Q7. A man walks 4.65 km West, then 12.7 km in the direction 30° West of North and finally 11.0 km due East. The man is now at (Ans: 11.0 km due North)

Q8. If vector *A* has the magnitude of 3.0 m and makes an angle 30° with the +x-axis, then the vector 2B = -A is: (Ans: 5.2 i -3.0j)

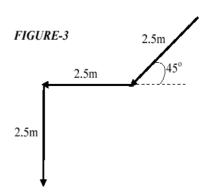
<u>T042</u>:

Q7. Two vectors A and B are shown in Fig 1. Each vector has a magnitude of 5.0 m. Find the magnitude of the resultant vector R = A + B and the angle (theta) between R and the positive x-axis (counter clockwise.(Ans: magnitude = 7.1 m, theta = 90 degrees)

Q8 Vector A has components Ax = 4.0, Ay = -3.0. Vector B has components Bx = 8.0, By = 6.0. Find the angle between the two vectors. (Ans: 74 degrees) **Q9#** Three vectors are A =1.00i + 2.00 j -3.00 k , B = 3.00 k and C = 6.00 i - 7.00 j. Find 2C.(A X B). (Ans: 114)

T041:

Q7: Two vectors are given as: A = -3.0 i + 5.0 j + 4.0 k and B = 4.0 i + 5.0 j + 3.0 k, where i,j and k are the unit vectors in the positive x, y and z directions. Find the angle between the vectors A and B. (Ans: 60 degrees)


Q8 In the cross product $F = v \times B$, take v = 2.0 i, F = 6.0 j and the x-component of vector B equals zero.What then is B in unit-vector notation. (Ans: -3.0 k)

Q9 Two displacement vectors A and B have equal magnitudes of 10 m. Vector A is along the +y axis and vector B makes 45 degrees counterclockwise with +x axis. Find the vector C such that B + C = 2A. (Ans: C = -7 i + 13 j)

T031:

Q6 The angle between the two vectors A = 2i + 4j and B = 4i - 2j is: (Ans: 90 degrees)

Q7As shown in Fig. 3, a block moves down on a 45-degree inclined plane of 2.5 m length, then horizontally for another 2.5 m, and then falls down vertically a height of 2.5 m. Find the magnitude and direction of the resultant displacement vector of the block. (Ans: 6.0 m and 45 degrees below horizontal axis)

Q8 Given the vectors A = 3 j + 6 k, B = 15 i + 21 k. Find the magnitude of vector C that satisfies equation 2A + 3C - B = 0. (Ans: 6.16)