Problems from chapter 8

A 1	1.00 kg b	block collides with a horizontal weightless spring of force
		position. The coefficient of kinetic friction between the block zontal surface is 0.25. What was the speed of the block at the
time	e of colli	ision ?
		DE= DK+ DUs=-fied -minital initial
A. B.	6.45 m/s	(0 1 mg 2) (1 A 2 m) 11 mg 2 1 N3=0 P. A
c.	4.22 m/s	(0-1 m v;2)+(1/2 kx2-0)=- pmg x pm
D.	5 77 -/-	
	8.63 m/s	$\frac{1}{2}mv_i^2 = \frac{1}{2}kx^2 + \mu_k mgx$
		[A = 1 9 4 max 9 63 m/s
		vi = \frac{1}{2} pe mg x = 8.63 m/s
A	block of	mass 1.00 kg is released from yest at the
		are a long the inclined plane?
A.	3.58 m/s	SE= DK+ Dly = - fred
B.	2.50 m/s	
(C)	2.17 =/s	
D.	3.07 =/s	The same of the sa
E.	3.33 m/s	N= 2g(dsint-Predcost)
		Magne
a b1	ock of man	= 2.17 m/s ss 2.0 kg is released from rest and
slid	es down a	rough track of radius R = 1.0 m,
AS 5	hown in	the figure. If the speed of the
block	k at the b	bottom is 4.0 m/s, what is the work
don.	by the	frictional force acting on the
bloc	k? evero	gy dissipated lay
		DE= DK+ DUg=-frd
	47 6 1	
c	+19.6 J A	$E = \left(\frac{1}{2}mv^2 - 0\right) + \left(-mgR\right) = -f_R d$
D	-19.6 J	2 1 h
E	+16.0 J	-3.6 J. energy dissipated by the force of friction
		" He force of friction
A 0.	20 kg blo	ck on a horizontal, frictionless surface, is connected to one
	or a shr Ti	ny or force constant 40.0 M/m. The other and of the angine is
HATO	TINEG. I	ne block is released when the spring is stratched o co - from
100	edattipit	um position. Find the speed of the block when the envince is
cosp	ressed 0.2	20 m From its equilibrium position.
	8.94 m/s	
3.	6.49 m/s	
c.	6.00 m/s	(\frac{1}{2}my^2-0)+(\frac{1}{2}kx^2-\frac{1}{2}kx^2)=0 \frac{1}{2}m \
D.	7.50 m/s	The 2 221 0 1
	8.00 m/s	04 = (x2-x2) = 8 m/s
		T IN

spring of force constant 100 M/m rests on an sclined frictionless plane that has the same ength as the spring. The inclined plane makes angle of 45 deg with the horizontal. A block mass 0.10 kg is pressed against the spring, empressing it a distance of 0.20 m, and then pleased. Find the maximum height the block maches above the point at which it leaves the oring (see figure). $y(max) = v_0^{++}2 \sin(theta)^{++}2 / (2 * g)$). 0.55 DE= AK+ Allq+Alls = 0 5.30 = $(\frac{1}{2}mv^2-0) + mg \times \sin 45^0$ 1.02 = $+(0-\frac{1}{2}kx^2) = 0$ where $\frac{1}{2}kx^2 = 0$ where $\frac{1}{2}kx^2 = 0$ where $\frac{1}{2}kx^2 = 0$ where $\frac{1}{2}kx^2 = 0$ is $\frac{1}{2}kx^2 = 0$. A 5.30 kg block is given an initial velocity of 5.00 m/s up a smooth 20 deg incline. How far up the incline has the block moved when its velocity is 1.50 m/s ? (1 m vz - 1 m vz 2) + mgd sin 20 = 0546

d = - 1 m (vz - vz 2) = 3.39 m DE= DK+ DUg = 0 A. 1.45 m B. 33.3 m C. 3.39 m D. 15.1 m E. 5.68 m A block of mass 1.00 kg is forced against a horizontal spring of negligible mass, compressing the spring an amount x = 0.200 m. When released, the block moves on a horizontal table with coefficient of friction mu = 0.200. The spring constant is 100 N/m. What distance will the block move before aing to rest. aing to rest. $\Delta E = \Delta K + \Delta U_S = - fled$ 0. 0.72 = $0 - \frac{1}{2} k x^2 = - p_k mg d$ 0. 1.87 = d = kx2 = 1.02m E. 5.33 m block of mass 1 kg is released from rest and slides down a frictionless track of height 1 m above a table. At the bottom of the track, m where the surface is horizontal, the block strikes and compresses a spring of spring constant 400 N/m (see figure). Find the maximum distance through which the spring is compressed. ΔE=ΔK+Dlg+Δls=0 (-mgh-0)+(1/2 kx2-0)=0 A. 0.532 m B. 0.710 m C. 0.615 m D. 0.221 m x = 2 mgh = 0.22m E. 0.935 m

A 1-kg block is attached to a spring of force constant 100 N/m. The spring is lying on a horizontal rough surface with one end fixed. The spring is compressed 0.196 m from its equilibrium position and then released. If the block first comes to rest when the spring is stretched 0.049 m, find the coefficient of friction between the block and the surface. initial Alls = - fred = - 1/2 mgd A) 0.75 $\frac{1}{2}kx_{f}^{2} - \frac{1}{2}kx_{i}^{2} = -p_{k}mgd$ $f_{k} = \frac{\frac{1}{2}kx_{i}^{2} - \frac{1}{2}kx_{f}^{2}}{mgd} = \frac{1.801}{2.401} = 0.75$ B. 0.186 final D. 0.5 E. 1.0 A 3 - kg block starts from rest at the top of a 30 deg incline and slides a distance of 2 m down the incline in 1.5 seconds. Find the frictional force acting on the block. $2-2a=26\pm i\frac{1}{2}at^2 \Rightarrow a=1.76m/s^2$ a. 13.5 N $v=y_0^2+at=2.67 \text{ m/s}$ DK+ Dug = - fod 8.98 N 9.37 N 14.7 M (=mv-o)+(0-mgh) = -fred fre=(12mv+mgdsine)/d = 9.37N . A 3-kg mass starts at rest and slides a distance d down a smooth 30-deg incline, where it contacts a spring of negligible mass, as shown in the figure. It slides an additional 0.2 m as initial it is brought momentarily to rest by compressing the spring. The force constant of the spring is 30" 400 N/m. Find the initial separation between the mass and the spring.

0.566 = $0.344 = (0 - mgk) + (\frac{1}{2}kx - 0) = 0$ C. 0.211 = D. 0.722 = $+ mq (d+x) sin \theta = \frac{1}{2} k x^2$ E. 0.435 = $mq d sin \theta + mq x sin \theta = \frac{1}{2} k x^2$ $d = \frac{1}{2} \frac{k x^2}{mq sin \theta} - x = \frac{0.344 m}{0.344 m}$ A stone is thrown up at an angle with a speed of 30.0 m/s from the top of a building which is 50 m high, as shown in the figure. Find the speed of the stone when it is 20 m above the ground. ΔK+ ΔUg = 0 = th(12- 10) + (plg (hz-h)=0 49.7 =/5 38.6 m/s B) C. 27.3 m/s 20.2 m/s D. $V^{2} = V^{2} = 29 \Delta k$ $V = \sqrt{V^{2} - 29 \Delta k} = \sqrt{30^{2} - 2 \times 9.8 \times (-30)} = 38.6$ 12.5 m/s