The gravitational force:

The magnitude of the gravitational force between two particles of mass

m₁ and m₂ is given by
$$F_{12} = G \frac{m_1 m_2}{r^2} = F_{21}$$

Where G is the gravitational constant = $6.65 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$ is a constant for the whole universe and r is the distance between the two particles.

If the particles are replaced by <u>rigid bodies</u>, then r is the distance from center to center of the two bodies.

> Principle of superposition:

Here we have more than two objects. The force on one of the object is the vector sum of the forces due to the remaining objects.

$$F_1 = \stackrel{n}{\overset{a}{a}} F_{1i} = F_{12} + F_{13} + F_{14} + \dots + F_{1n}$$

Be careful: This is a vector equation. F₁ is the force on particle 1 due to the other particles and $F_{1i} = G \frac{m_1 m_i}{r_{1i}^2}$

Gravitation near the surface of the Earth:

Suppose a particle of mass m is at an altitude h above the surface of the Earth, then there is a force on the particle given by $F = G \frac{M_E m}{r^2} = ma_g$ where a_g is the gravitational acceleration. Then a_g is given by:

$$a_g = G \frac{M_E}{r^2}$$

where M_E is the mass of the Earth and $r = R_E + h$. Here h is the distance from the surface of the Earth to the particle.

Because the **Earth rotates**, then the difference between the free fall acceleration g and a_g is given by

$$a_g - g = \left(\frac{2\mathbf{p}}{T}\right)^2 R$$

where T is the period of rotation of the Earth and R is the perpendicular distance between the object (on the surface of the Earth) and the axis of rotation of the Earth about itself.

- ✓ <u>At the equator</u> R is R_E and $a_g = 0.034 \text{ m/s}^2$.
- ✓ <u>At the poles</u> R is zero and $a_g = 0$, that is $a_g = g$.

Gravitation inside the Earth:

The gravitational force on a particle of mass m inside the Earth is given by (as was proved in the lecture):

$$F = G \frac{M'm}{r^2} = G(\frac{4}{3}pr^3r)\frac{m}{r^2} = (\frac{4pmG}{3}r)r$$

where r is the distance from the center of the Earth to the particle and ρ is the density of the Earth.

The gravitational potential energy:

The potential energy between two particles of mass m_1 and m_2 separated by a distance r is given by:

$$U = -\frac{Gm_1m_2}{r}$$

the unit is **Joule** and we take U at infinity to be zero.

If the system consists of <u>three particles</u> m_1 , m_2 and m_3 , then U will be:

$$U = -G(\frac{m_1m_2}{r_{12}} + \frac{m_1m_3}{r_{13}} + \frac{m_2m_3}{r_{23}})$$

✤ For <u>four particles system</u> you will have <u>6 terms</u>.

Suppose you want fire a projectile of mass m from the surface of the Earth in a distance r in space. The total energy is conserved in this process.

$$\mathbf{E}_{i} = \mathbf{K}_{i} + \mathbf{U}_{i} = \mathbf{E}_{f} = \mathbf{K}_{f} + \mathbf{U}_{f}$$

or
$$\frac{1}{2}mv_i^2 - G\frac{Mm}{R_E} = \frac{1}{2}mv_f^2 - G\frac{Mm}{r}$$

If the projectile is to move upward forever, then the initial speed is called the <u>escape speed</u>.

In this case set $v_I = v_{esc}$, $r = \infty$, $v_f = 0 \Rightarrow K_f = 0$ and $U_f = 0$. Then the escape speed will be given by:

$$v_{esc} = \sqrt{2 \frac{GM}{R_E}}$$

Note: The escape speed does not depend of the mass of the projectile. It depends only on the mass and radius of the planet from which you fire the projectile.

Keplers laws:

The law of orbits: All planets move in <u>elliptical orbits</u> with the Sun at one focus.

- The angular momentum of the planet, with the Sun as the origin, <u>is conserved</u>.
- The period of rotation of any planet around <u>the Sun</u> is related to <u>the semi-major axis a</u> by the relation:

$$T^2 = (\frac{4\mathbf{p}^2}{GM})a^3$$

where M is the mass of the Sun in this case.

For circular orbits, replace a by r, the radius of the orbit.

Energies in Satellite motion:

Suppose a satellite orbits the **Earth** at a distance r from the center of the Earth in a circular orbit. The satellite will have an <u>orbital speed</u> of

$$v = \sqrt{\frac{GM}{r}}$$

The kinetic energy of a satellite is :

$$K = \frac{1}{2}mv^2 = \frac{GMm}{2r}$$

and the potential energy is:

$$U = -\frac{GMm}{r}$$

The total mechanical energy of the satellite at this location will be:

$$E = K + U = -\frac{GMm}{2r}$$

Here M is the mass of the Earth and m is the mass of the satellite. r is the distance from the satellite to the center of the Earth.

For *elliptical orbits*, the mechanical energy is:

$$E = -\frac{GMm}{2a}$$

where a is the semi-major axis.