Name:

Key

Id#:

Sect.#:

A 10.0-kg block is released from rest at point A in Figure. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2250 N/m, and compresses the spring 0.300 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C.

QUIZ#7- CHAPTER 8 DATE: 13/11/17

Name:

Key

Id#:

Sect.#:

A 5.0 kg block is pulled by a force F = 50 N along a rough incline as shown in the figure. The block starts from rest at the bottom of the incline.

Calculate the speed of the block when it has moved a distance of 3.0 m up the incline.

$$\Delta K + \Delta llg = W_{fk} + W_F$$

$$\Delta K = K_f - K_i = \frac{1}{2} m v_f^2 - 0$$

$$\Delta llg = mg l = mg d sin \theta$$

$$W_F = F d$$

$$W_{fk} = - f_k F_N d = - f_k m_g \cos \theta d$$

$$\frac{1}{2} m v_f^2 + mg d sin \theta = - f_k m_g \cos \theta d + F d$$

$$2.5 v_f^2 + 73.5 = -31.8 + 150$$

$$v_f^2 = 17.88 \qquad V_f = 4.23 m/s$$

QUIZ#7- CHAPTER 8 DATE: 13/11/17

Name:

Key

Id#:

Sect.#:

The ball of mass 2.0 kg is release from rest when the string makes an angle $\theta = 30^{0}$ with the vertical as shown in the figure.

- (a) Use conservation of energy to calculate the speed of the ball as it passes its lowest point.
- (b) Does the speed increase, decrease, or remain the same when the mass of the ball is doubled? Explain.
- (c) Does the speed increase, decrease, or remain the same when the angle θ is doubled?

a)
$$\Delta K + \Delta Ug = 0$$
 $h = L - L \cos \theta$

$$\Delta K = \frac{1}{2} m v_f^L - 0$$

$$\Delta Ug = - mgh = -mg L(1 - \cos \theta)$$

$$\frac{1}{2} m y_{t}^{2} - mg L(1-cos\theta) = 0$$

$$V_{t}^{2} = 2gL(1-cos\theta)$$

$$V_{t} = \sqrt{2gL(1-cos\theta)} = \sqrt{5.25} = \sqrt{2.29 m/s}$$

- 5) The speed remains the same because it is independent of the mass
- c) If this doubled cost is smaller and h becomes larger => Speed increases.