QUIZ#5- CHAPTER 5 DATE: 23/10/17

Name: Key Id#: Sect.#:

Two blocks of masses $M_1 = 2.0$ kg and $M_2 = 4.0$ kg are in contact with each other and move on a frictionless horizontal surface under the action of a horizontal force F = 80 N as seen in the figure.

- (a) Calculate the acceleration of the blocks.
- (b) Calculate the force that M₁ exerts on M₂.
- (c) Calculate the force that M₂ exerts on M₁. Hint: Draw free body diagram for each block

Figure (M₁+M₂)
$$\alpha$$

$$A = \frac{F}{M_1 + M_2} = \frac{80}{6} = \boxed{13.3 \, \text{m/s}^2}$$

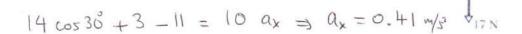
$$A = \frac{F}{M_1 + M_2} = \frac{80}{6} = \boxed{13.3 \, \text{m/s}^2}$$

$$A = \frac{F_{21}}{M_1 + M_2} = \frac{F_{22}}{M_2} = \frac{F_{21}}{M_2} = \frac{F_{22}}{M_2} =$$

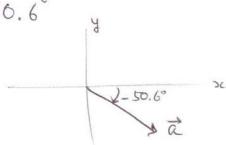
They are action - reaction pair

QUIZ#5- CHAPTER 5 DATE: 23/10/17

Name:


Key

Id#:


Sect.#:

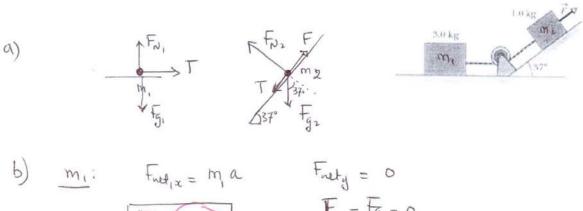
The figure shows an overhead view of a block of mass 10 kg acted upon by five forces. Calculate the magnitude and direction of the acceleration of the block.

Fret, x = max

$$5 + 14 \sin 30 - 17 = 10 \text{ ay} \Rightarrow \text{ay} = -0.5 \text{ m/s}^2$$

QUIZ#5- CHAPTER 5 DATE: 23/10/17

Name:


Key

Id#:

Sect.#:

Consider the two blocks shown in the figure pulled by a force F = 20 N.

- (a) Draw a free body diagram for each block.
- (b) Write Newton's second law for each block.
- (c) Calculate the acceleration on the blocks.

$$\frac{m_2:}{F_{net,x} = m_2 a} - (1) \qquad F_{n,y} - f_{g,z} = 0$$

$$\frac{m_2:}{F_{net,x} = m_2 a} - (2) \qquad F_{net,y} = 0$$

$$\frac{F_{net,x} = m_2 a}{F_{net,x} = m_2 a} - (2) \qquad F_{nex} - m_2 g \cos 37 = 0$$

$$F - m_1 a - m_2 g \sin 37^\circ = m_2 a$$

$$F - m_2 g \sin 37^\circ = (m_1 + m_2) a$$

$$a - F - m_2 g \sin 37^\circ = 20 - 5.9 = 3.5 m/s^2$$

$$m_1 + m_2 = 4$$