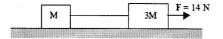
PHYS101 QUIZ#5 - CHAPTER 5 DATE: 7/10/12

Name:


Key

Id#:

Sect#

In the figure M = 1 kg. Calculate

- (a) The acceleration of mass M.
- (b) The tension in the rope.

4)

Fretz ma = 4 a = 14 = 13,5 m/s²

(d

$$\lceil m \rceil \rightarrow \uparrow$$

Fret = Ma

PHYS101 QUIZ#5- CHAPTER 5 DATE: 7/10/12

Name:

Key

Id#:

Sect#

In the figure the three blocks are pushed by a force P = 30 N. Assume the surface is frictionless.

- (a) Calculate the acceleration of block (2).
- (b) What is the magnitude of the force exerted by block (1) on block (2)?

P |
$$[okg]$$
 Frut = Ma
 $30=10 \times a \Rightarrow [a=3m/s^2]$

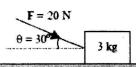
b)
$$\frac{P}{2K_{9}} \leftarrow F_{12}$$

$$F_{21} = F_{12}$$

$$P - F_{12} = m_1 \alpha$$

 $30 - F_{12} = 2 \times 3 = 6 \implies F_{12} = 30 - 6 = 24N$

PHYS101 QUIZ#5- CHAPTER 5 DATE: 7/10/12


Name:

Key

ld#:

Sect#

A 3.0 kg block is pushed across a horizontal surface by a force F = 20 N as shown in the figure.

- (a) What is the magnitude of the acceleration of the block? (Assume the surface to be frictionless)
- (b) What is the magnitude of the normal force?

9)

$$\alpha = \frac{F\cos 30}{m} = \frac{20 \times \cos 30}{3}$$

6)

$$F_{N} = 3 \times 9.8 + 20 \times \cos 30^{\circ} = \boxed{39.4 \text{N}}$$