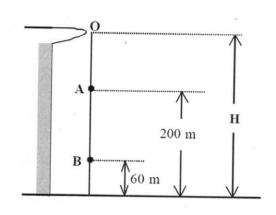
QUIZ#2- CHAPTER 2 DATE: 16/09/19

Name:

Key

Id#:

Sect.#:


- 1. A particle is released from rest at a height H. It takes 2.00 s for the particle to fall from point A to point B (see Figure).
 - (a) What is the velocity of the particle at point A? Write your answer in 2 SF.

Between points A&B:

A
$$y_0=0$$
 $\Delta y = V_A t - \frac{1}{2}gt^2$

$$-140 = V_A(2) - 4.9(2)^2$$
B $y = -140m$

$$V_A = -60 \text{ m/s}$$

(b) Calculate the height H. Write your answer in 3 SF.

Between points O and A:

$$y_{00} - 90 = -4.8t \Rightarrow t = 6.1 \text{ sec}$$

$$\Delta y = \sqrt{6t - \frac{1}{2}gt^2} = -4.9(6.1)^2 = -185 \text{ m}$$

$$H = +185 + 200 = \boxed{385 \text{ m}}$$

(c) How long does it take the particle to reach the ground? Write your answer in 3 SF.

$$\Delta y = x_0 t^2 - \frac{1}{2}gt^2 - 385 = -4.9t^2 \Rightarrow t = 8.865$$

(d) What is the velocity of the particle just before impact with the ground? Write your answer in 3 SF.

$$V^{2} = x_{0}^{2} - 2g \Delta y$$

$$V = \pm \sqrt{-2g \Delta y}$$

$$V = -\sqrt{-2 \times 9.8 \times (-385)} = -86.9 \text{ m/s}$$

$$V = 10^{\circ} - 9t$$

= -9.8×8.86
= $[-86.8 \text{ m/s}]$

QUIZ#2- CHAPTER 2 DATE: 16/09/19

Name:

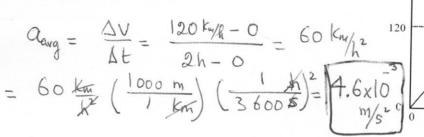
Key

Id#:

Sect.#:

- 1. A car starts a trip from Dammam, goes 400 km in a straight line to Riyadh in 3.5 hours. Immediately, the car is turned around, and returns to Dammam in 4.0 hours.
 - (a) Calculate the average velocity of the car for the whole trip. Give your answer in m/s.

$$V_{\text{aug}} = \frac{X_{\beta} - X_{i}}{\Delta t} = \frac{O - O}{7.5h} = 0$$


(b) Calculate the average speed of the car for the whole trip.

Give your answer in m/s.

2. The figure represents the straight line motion of a car.

(a) What is the acceleration of the car between t = 0 and t = 2 hours?

Give your answer in m/s².

 $\begin{array}{c|c} & & & \\ \hline \end{array}$

(b) What is the distance traveled by the car from t = 0 to t = 5 h? Give your answer in meters k_i lowelers.

distance travelled = area under the curve
$$= \frac{1}{2} \left(\frac{120 \, \text{km} \times 2 \text{h}}{\text{F}} \right) + \frac{120 \, \text{km} \times 3 \text{h}}{\text{F}} \times \frac{3 \, \text{h}}{\text{F}}$$

$$= \frac{120 \, \text{km} + (120 \, \text{km} \times 3)}{120 \, \text{km} \times 3} = \frac{480 \, \text{km}}{120 \, \text{km}}$$

QUIZ#2- CHAPTER 2 DATE: 16/09/19

Name:

Key

Id#:

Sect.#:

1. An object starts from rest at the origin and moves along the x-axis with a **constant acceleration** of 4.0 m/s^2 . Find its average velocity as it goes from x = 0 m to x = 10 m.

$$V_{avg} = \frac{X_f - X_i}{t_f - t_i} \qquad t_{i=0}; \ X_{i=0}; \ X_f = 10m$$

$$X_f - X_o = X_o t^2 + \frac{1}{2} a t^2 \qquad 10 - 0 = \frac{1}{2} (4) t^2$$

$$t = 2.23 \text{ sec}$$

$$V_{avg} = \frac{10 - D}{2.23 - 0} = 4.47 \text{ m/s}$$

2. The figure shows a velocity-time graph of a runner. If the runner starts from the position x = -2.0 m, find his position at t = 4.0 s.

 $\Delta X = \int v \, dt = \text{area under}$ $\Delta X = \int v \, dt = \text{area under}$ $\int v \, d$