King Fahd University of Petroleum & Minerals Physics Department Phys212- Quiz#3

Name:

Key

ID#:

Fe

 The work function of some metals is listed below. Indicate which metals will show photoelectric effect when light of 300 nm wavelength falls on them.

Cu

Mg

Φ (in eV)	2.4	2.3	2.2	3.7	4.8	4.3	4.7	6.3	4.75	
	E		hc_	124	0 eY.	ngh	4.1	3eV		
			hc =		30 n/h		2			A / 0
Any me	tal 1	with	< 4	.13 el	1 will	Wor	k:	Li, Na	, K, and	Mg.only.

- 2. Consider tungsten (W) metal.
 - (a) What is the longest light wavelength that can result in production of a photocurrent?
 - (b) What is the maximum kinetic energy of emitted electrons when light of wavelength λ = 200 nm is used to irradiate a piece of W?
 - (c) What is the stopping potential (voltage) for this case ($\lambda = 200 \text{ nm}$)?

a)
$$K_{\text{max}} = hf - \phi$$
 λ_0 is when $K_{\text{max}} = 0$

$$\Rightarrow hf_0 = \phi \Rightarrow f = \frac{\phi}{h} = \frac{C}{\lambda_0} \Rightarrow \lambda_0 = \frac{hC}{\phi}$$

$$\lambda_0 = \frac{1240 \text{ eV.n/m}}{4.75 \text{ n/m}} = \sqrt{261 \text{ n/m}}$$

b)
$$K_{\text{max}} = hf - \phi = \frac{hC}{\lambda} - \phi = \frac{1240 \text{ eVinsh}}{200 \text{ g/s}} = 4.75 = [1.45 \text{ eV}]$$