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I this chapter the principles of wave mechanics are applied to particles strik-
ing a potential barrier. Unlike potential wells that attract and trap particles,
barriers repel them. Because barriers have no bound states, the emphasis
shifts to determining whether a particle incident on a barrier is reflected or
transmitted.

In the course of this study we shall encounter a peculiar phenomenon called
tunneling. A purely wave-mechanical effect, tunneling nevertheless is essential
to the operation of many modern-day devices and shapes our world on a scale
from atomic all the way up to galactic proportions. The chapter includes a dis-
cussion of the role played by tunneling in several phenomena of practical inter-
est, such as field emission, radioactive decay, and the operation of the ammonia
maser. Finally, the chapter is followed by an essay on the scanning tunneling
microscope, or STM, a remarkable device that uses tunneling to make images
of surfaces with resolution comparable to the size of a single atom.

7.1 THE SQUARE BARRIER

The square barrier is represented by a potential energy function U(x) that
is constant at U in the barrier region, say between x = 0 and x = L, and
zero outside this region. One method for producing a square barrier poten-
tial using charged hollow cylinders is shown in Figure 7.1a. The outer cylin-
ders are grounded while the central one is held at some positive potential
V. For a particle with charge ¢, the barrier potential energy is U = ¢V. The
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Figure 7.1 (a) Aligned metallic cylinders serve as a potential barrier to charged parti-
cles. The central cylinder is held at some positive electric potential V, and the outer
cylinders are grounded. A charge ¢ whose total energy is less than ¢Vis unable to pene-
trate the central cylinder classically, but can do so quantum mechanically by a process
called tunneling. (b) The potential energy seen by this charge in the limit where the
gaps between the cylinders have shrunk to zero size. The result is the square barrier po-
tential of height U.

charge experiences no electric force except in the gaps separating the cylin-
ders. The force in the gaps is repulsive, tending to expel a positive charge ¢
from the central cylinder. The electric potential energy for the idealized
case in which the gaps have shrunk to zero size is the square barrier,
sketched in Figure 7.1b.

A classical particle incident on the barrier, say from the left, experiences a
retarding force on arriving at x = 0. Particles with energies I greater than U
are able to overcome this force, but suffer a reduction in speed to a value
commensurate with their diminished kinetic energy (£ — U) in the barrier re-
gion. Such particles continue moving to the right with reduced speed until
they reach x = L, where they receive a “kick” accelerating them back to their
original speed. Thus, particles having energy I > U are able to cross the
barrier with their speed restored to its initial value. By contrast, particles with
energy I/ < U are turned back (reflected) by the barrier, having insufficient
energy to cross or even penetrate it. In this way the barrier divides the space
into classically allowed and forbidden regions determined by the particle
energy: If > U, the whole space is accessible to the particle; for £ < U only
the interval to the side of the barrier in which the particle originates is accessi-
ble—the barrier region itself is forbidden, and this precludes particle motion
on the far side as well.

According to quantum mechanics, however, there is no region inaccessi-
ble to our particle, regardless of its energy, since the matter wave associ-
ated with the particle is nonzero everywhere. A typical wavefunction for this
case, illustrated in Figure 7.2a, clearly shows the penetration of the wave into
the barrier and beyond. This barrier penetration is in complete disagreement
with classical physics. The process of penetrating the barrier is called tunnel-
ing: we say the particle has tunneled through the barrier.

The mathematical expression for ¥ on either side of the barrier is easily
found. To the left of the barrier the particle is free, so the wavefunction here is
composed of the free particle plane waves introduced in Chapter 6:

W(x, ) = Aeilke= o) 4 Boil~ke=w) (7.1)

This wavefunction W(x, ¢) is actually the sum of two plane waves. Both have
frequency w and energy E = fiw = #2k2/2m, but the first moves from left to
right (wavenumber k), the second from right to left (wavenumber —k). Thus,

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.


Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight


7.1

(incident)

¥, I
¢ Wy b4
o |y m PR ——— (transmitted)
\ (reflected) — Fp iR
e
1

—ThY o —
I I Be

i o1

(a) (b)

Figure 7.2 (a) A typical stationary-state wave for a particle in the presence of a square
barrier. The energy E of the particle is less than the barrier height U. Since the
wave amplitude is nonzero in the barrier, there is some probability of finding the
particle there. (b) Decomposition of the stationary wave into incident, reflected, and
transmitted waves.

that part of ¥ proportional to A is interpreted as a wave incident on the bar-
rier from the left; that proportional to B as a wave reflected from the barrier
and moving from right to left (Fig. 7.2b). The reflection coefficient R for the
barrier is calculated as the ratio of the reflected probability density to the inci-
dent probability density:

e (‘P*‘P)reﬂected B*B _ |B|2

= = =0 7.
B (\I’*\I’)incident A*A |A2 ( 2)

In wave terminology, R is the fraction of wave intensity in the reflected beam;
in particle language, R becomes the likelihood (probability) that a particle in-
cident on the barrier from the left is reflected by it.

Similar arguments apply to the right of the barrier, where, again, the parti-
cle is free:

W(x, 1) = Fellk=0) 4 Gil—hx= o) (7.3)

This form for W(x, ¢) is valid in the range x > L, with the term proportional to
F describing a wave traveling to the right, and that proportional to G a wave
traveling to the left in this region. The latter has no physical interpretation for
waves incident on the barrier from the left, and so is discarded by requiring
G = 0. The former is that part of the incident wave that is transmitted through
the barrier. The relative intensity of this transmitted wave is the transmission
coefficient for the barrier 7

— (\P*\I’)transmitted — F*F — |F

(P*W)incident  AFA AP

2

T

(7.4)

The transmission coefficient measures the likelihood (probability) that a parti-
cle incident on the barrier from the left penetrates to emerge on the other
side. Since a particle incident on the barrier is either reflected or transmitted,
the probabilities for these events must sum to unity:

R+T=1 (7.5)

Equation 7.5 expresses a kind of sum rule obeyed by the barrier coefficients.
Further, the degree of transmission or reflection will depend on particle
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Joining conditions at a
square barrier

energy. In the classical case 7= 0 (and R=1) for E< U, but T=1 (and
R = 0) for E> U. The wave-mechanical predictions for the functions 7(E)
and R(E) are more complicated; to obtain them we must examine the matter
wave within the barrier.

To find ¥ in the barrier, we must solve Schroédinger’s equation. Let
us consider stationary states P(x)e ! whose energy E = fiw is below
the top of the barrier. This is the case E < U for which no barrier pen-
etration is permitted classically. In the region of the barrier (0 < x < L),
U(x) = U and the time-independent Schrodinger equation for )(x) can be
rearranged as

>y {Qm(U— E)

) 72 } ()

With E < U, the term in braces is a positive constant, and solutions to this
equation are the real exponential forms e=%*. Since (d?/dx?)e™** = (a)?e™**, we
should identify the term in braces with & or, equivalently,
N2m(U — E)

a 7 (7.6)
For wide barriers, the probability of finding the particle should decrease
steadily into the barrier; in such cases only the decaying exponential is impor-
tant, and it is convenient to define a barrier penetration depth 6 = 1/a. Ata
distance & into the barrier, the wavefunction has fallen to 1/¢ of its value at the
barrier edge; thus, the probability of finding the particle is appreciable only
within about & of the barrier edge.

The complete wavefunction in the barrier is, then,

W(x, {) = h(x)e @ = Coax—iol 4 pptex=iot  for0 < x<[ (7.7)

The coefficients C and D are fixed by requiring smooth joining of the wave-
function across the barrier edges; that is, both ¥ and 9¥/dx must be continu-
ous at x = 0 and x = L. Writing out the joining conditions using Equations
7.1, 7.3, and 7.7 for ¥ in the regions to the left, to the right, and within the
barrier, respectively, gives

A+B=C+D (continuity of ¥ at x = 0)

v
kA — kB = aD — aC (continuity of Y at x = ()>
X
) (7.8)
Cem L + Detol = [yikL (continuity of ¥ at x = L)

_ ow
(aD)et L — (aC)e L = jkFekl (continuity ofa— atx = L)
X

In keeping with our previous remarks, we have set G = 0. Still, there is one
more unknown than there are equations to find them. Actually this is as it
should be, since the amplitude of the incident wave merely sets the scale for
the other amplitudes. That is, doubling the incident wave amplitude simply
doubles the amplitudes of the reflected and transmitted waves. Dividing
Equations 7.8 through by A furnishes four equations for the four ratios B/ A,
C/A, D/A, and F/A. These equations may be solved by repeated substitution
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7.1 THE SQUARE BARRIER 235
to find B/A and so on in terms of the barrier height U, the barrier width
L, and the particle energy E. The result for the transmission coefficient T N
is (see Problem 7) !
1 U? U |
T(E) =11 + —|—————sinh®aL (7.9) !
4| E(U—-E) | L > E
o U B Iy

where sinh denotes the hyperbolic sine function: sinh x = (¢ — ¢ %) /2.

A sketch of T(E) for the square barrier is shown in Figure 7.3. Equation
7.9 holds only for energies E below the barrier height U. For E> U, «
becomes imaginary and sinh (aL) turns oscillatory. This leads to fluctuations
in T(F) and isolated energies for which transmission occurs with complete
certainty, that is, 7(F£) = 1. Such transmission resonances arise from wave
interference and constitute further evidence for the wave nature of matter
(see Example 7.3).

EXAMPLE 7.1 Transmission Coefficient
for an Oxide Layer

Two copper conducting wires are separated by an insulat-
ing oxide layer (CuO). Modeling the oxide layer as a
square barrier of height 10.0 eV, estimate the transmis- T= {
sion coefficient for penetration by 7.00-eV electrons

(a) if the layer thickness is 5.00 nm and (b) if the layer

thickness is 1.00 nm.

Solution From Equation 7.6 we calculate « for this
case, using o = 1.973 keVu&/c and m, = 511 keV/ 2 for
electrons to get

\2m.(U — E)

_ \2(511 keV/?) (3.00 X 103 keV)

, ders of magnitude!
1.973 keV-A/¢

=(0.8875 A1

2

Figure 7.3 A sketch of the
transmission coefficient 7T(E)
for a square barrier. Oscillation
in 7(F) with E, and the trans-
mission resonances at [, Fo,
and FE3, are further evidence for
the wave nature of matter.

The transmission coefficient from Equation 7.9 is then

s [ 10

41 7(3)

Substituting . = 50.0 A (5.00 nm) gives
T=0.963 X 1073

-1
} sinh?(0.8875 /f\‘l)L}

a fantastically small number on the order of 10738 With
L =10.0 A (1.00 nm), however, we find

T=0.657 X 1077

i We see that reducing the layer thickness by a factor of 5
enhances the likelihood of penetration by nearly 31 or-

Exercise 1 Go to our companion Web site (http://info.brookscole.com/
mp3e) and select QMTools Simulations — Exercise 7.1. This particular Java applet
shows the de Broglie wave (actually, just the real part) for an electron with energy
7.00 eV incident from the left on a square barrier 10.0 eV high and 1.0 A wide. Compare
this waveform with the illustration of Figure 7.2a. In fact, this wave is inherently complex
valued, with a modulus and phase that varies from point to point. A more informative
display plots the modulus in the usual way but uses color to represent the phase of the
wave. Right-click on the waveform and select Properties . . . — Color-4-Phase — Apply to
show the colorfor-phase plotting style. Why does the transmitted wave (to the right of
the barrier) now have a uniform height? What is the significance of this height? Follow
the ons-site instructions to display the incident component of this scattering wave and
determine the transmission coefficient directly from the graphs. Compare your result
with the prediction of Equation 7.9.
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EXAMPLE 7.2 Tunneling Current
Through an Oxide Layer

A 1.00-mA current of electrons in one of the wires of
Example 7.1 is incident on the oxide layer. How much
of this current passes through the layer to the adjacent
wire if the electron energy is 7.00 eV and the layer
thickness is 1.00 nm? What becomes of the remaining
current?

Solution Because each electron carries a charge equal
to ¢= 1.60 X 10719 C, an electron current of 1.00 mA
represents 1073/(1.60 X 10719) = 6.25 X 10'° electrons
per second impinging on the barrier. Of these, only the
fraction T is transmitted, where 7 = 0.657 X 1077 from
Example 7.1. Thus, the number of electrons per second
continuing on to the adjacent wire is

(6.25 X 101%)(0.657 X 107 7) = 4.11 X 108 electrons/s

This number represents a transmitted current of

(4.11 X 108/5)(1.60 X 1071 C)= 6.57 X 10711 A
= 65.7 pA (picoamperes)

(Notice that the same transmitted current would be ob-
tained had we simply multiplied the incident current
by the transmission coefficient.) The remaining
1.00 mA — 65.7 pA is reflected at the layer. It is impor-
tant to note that the measured conduction current in the
wire on the side of incidence is the net of the incident
and reflected currents, or again 65.7 pA.

EXAMPLE 7.3 Transmission Resonances

Consider a particle incident from the left on a square
barrier of width L in the case where the particle energy E
exceeds the barrier height U. Write the necessary wave-
functions and impose the proper joining conditions to
obtain a formula for the transmission coefficient for this
case. Show that perfect transmission (resonance) results
for special values of particle energy, and explain this phe-
nomenon in terms of the interference of de Broglie
waves.

Solution To the left and right of the barrier, the wave-
functions are the free particle waves given by Equations
7.1 and 7.3 (again with G = 0 to describe a purely trans-
mitted wave on the far side of the barrier):

W(x, ) = Ae'rm @l 4 Beil—kewh <0
W(x, ) = Felthew)) x> L

The wavenumber k and frequency w of these oscillations
derive from the particle energy £ in the manner char-
acteristic of (nonrelativistic) de Broglie waves; that is,
E = (hk)%/2m = fiw. Within the barrier, the wavefunction
also is oscillatory. In effect, the decay constant « of Equa-
tion 7.6 has become imaginary, since £ > U. Introducing
a new wavenumber k' as a = ik’, the barrier wavefunction

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.

becomes
W(x, t) = Cel("Kx—0) 4 ppilkx=w)

with &' = [2m(E — U)/#2]1/2 a real number.

The barrier wavefunction will join smoothly to the ex-
terior waveforms if the wavefunction and its slope are
continuous at the barrier edges x = 0 and x = L. These
continuity requirements are identical to Equations 7.8
with the replacement a = ik’ everywhere. In particular,
we now have

A+B=C+D

0<x<L

(continuity of ¥
atx = 0)

L v
kA—kB=FKD—-FkC continuity of e
x

atx=()>

Ce L + D'l = ikl (continuity of ¥ at

x= L)

o ” . v
K DL — ' Cem WL = RFe*L <continuity of e
x

atx:L>

To isolate the transmission amplitude F/ A, we must elimi-
nate from these relations the unwanted coefficients B,
C, and D. Dividing the second line by k and adding to the
first eliminates B, leaving A in terms of C and D. In
the same way, dividing the fourth line by &' and adding
the result to the third line gives D (in terms of F), while
subtracting the result from the third line gives C (in
terms of F). Combining the previous results finally yields
Ain terms of [

1 . K k "
A:—FZM‘ _< +_> k'L
4 Fe {[2 . v e
+ [2 + (k + i)} e*”i’L}
k k

The transmission probability is 7 = |[F/A]%. Writing
¢~ L = cos k'L *isin k'L and simplifying, we obtain the
final result

i‘? k’L*'(k—’+ k)' k’L‘2
1|2 o8 i\ ) sin

L_‘Ar
T |F

2
e & [L] sin? k'L
4| E(E-U)
We see that transmission resonances occur whenever
k'L is a multiple of 7. Using k' = [2m(F — U)/#21Y2, we
can express the resonance condition in terms of the par-
ticle energy E as

o h2
E=U+ n? :
2ml

n=1,2,. ..
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Particles with these energies are transmitted perfectly
(T'= 1), with no chance of reflection (R = 0).
Resonances arise from the interference of the matter
wave accompanying a particle. The wave reflected from
the barrier can be regarded as the superposition of mat-
ter waves reflected from the leading and trailing edges of
the barrier at x = 0 and x = L, respectively. If these re-
flected waves arrive phase shifted by odd multiples of
180° or 7 radians, they will interfere destructively, leaving
no reflected wave (R = 0) and thus perfect transmission.
Now the wave reflected from the rear of the barrier at

7.1 THE SQUARE BARRIER 237

x = L must travel the extra distance 2L before recombin-
ing with the wave reflected at the front, leading to a
phase difference of 2k'L. But this wave also suffers an in-
trinsic phase shift of 7 radians, having been reflected
from a medium with higher optical density.! Thus,
the condition for destructive interference becomes
2K L+ = (2n + 1), or simply k'L = nar, where n = 1,
2,
Perfect transmission also arises when particles are
scattered by a potential well, a phenomenon known as
the Ramsauer—-Townsend effect (see Problem 11).

Exercise 2 Verify that for E>> U, the transmission coefficient of Example 7.3 ap-
proaches unity. Why is this result expected? What happens to 7T in the limit as E ap-
proaches U?

EXAMPLE 7.4 Scattering by a Potential Step

The potential step shown in Figure 7.4 may be regarded
as a square barrier in the special case where the barrier
width L is infinite. Apply the ideas of this section to dis-
cuss the quantum scattering of particles incident from
the left on a potential step, in the case where the step
height U exceeds the total particle energy E.

Solution The wavefunction everywhere to the right of
the origin is the barrier wavefunction given by Equation
7.7. To keep ¥ from diverging for large x, we must take
D = 0, leaving only the decaying wave

W(x, () = Ce ¥ x>

This must be joined smoothly to the wavefunction on the
left of the origin, given by Equation 7.1:

\I;(x’ l) — Aeikx—ia)t + Be—ikx—iwt x<0

Figure 7.4 (Example 7.4) The potential step of height
U may be thought of as a square barrier of the same
height in the limit where the barrier width L becomes
infinite. All particles incident on the barrier with energy
E < Uare reflected.

The conditions for smooth joining at x = 0 yield

A+ B=C (continuity of V)

) . L v
kA — kB = —aC continuity ofa—
x

Solving the second equation for C and substituting into
the first (with 6 = 1/«a) gives A + B = —ikOA + k6B, or
B (1 + ko)

A INSEES]
The reflection coefficient is R = |B/A[> = (B/A)(B/A)*,

or
1+ ikd — i
o-(g2mmyasmm.,
(1 — dk8) /\ (1 + ikd)

Thus, an infinitely wide barrier reflects all incoming
particles with energies below the barrier height, in agree-
ment with the classical prediction. Nevertheless, there is
a nonzero wave in the step region since

C B —2ikd

=l+—=—"-=%0
A A 1— ks

But the wavefunction for x> 0, W(x, {) = Ce ¥~ i
not a propagating wave at all; that is, there is no net trans-
mission of particles to the right of the step. However,
there will be quantum transmission through a barrier of
finite width, no matter how wide (compare Eq. 7.9).

IThis is familiar from the propagation of classical waves: A traveling wave arriving at the interface

separating two media is partially transmitted and partially reflected. The reflected portion is
phase shifted 180° only in the case where the wave speed is lower in the medium being pene-
trated. For matter waves, p = /A, and the wavelength (hence, wave speed) is largest in regions
where the kinetic energy is smallest. Thus, the matter wave reflected from the front of a barrier
suffers no change in phase, but that reflected from the rear is phase shifted 180°.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.
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238 CHAPTER 7 TUNNELING PHENOMENA

Approximate transmission
coefficient of a barrier with
arbitrary shape

A

(a) (b)

Figure 7.5 (a) Total internal reflection of light waves at a glass—air boundary. An evanes-
cent wave penetrates into the space beyond the reflecting surface. (b) Frustrated total in-
ternal reflection. The evanescent wave is “picked up” by a neighboring surface, resulting
in transmission across the gap. Notice that the light beam does not appear in the gap.

The existence of a barrier wave without propagation (as in Example 7.4) is
familiar from the optical phenomenon of total internal reflection exploited in
the construction of beam splitters (Figure 7.5): Light entering a right-angle
prism is completely reflected at the hypotenuse face, even though an electro-
magnetic wave, the evanescent wave, penetrates into the space beyond. A sec-
ond prism brought into near contact with the first can “pick up” this evanes-
cent wave, thereby transmitting and redirecting the original beam (Fig. 7.5b).
This phenomenon, known as frustrated total internal reflection, is the
optical analog of tunneling: In effect, photons have tunneled across the gap
separating the two prisms.

7.2 BARRIER PENETRATION: SOME APPLICATIONS

In actuality, few barriers can be modeled accurately using the square barrier
discussed in the preceding section. Indeed, the extreme sensitivity to barrier
constants found there suggests that barrier shape will be important in making
reliable predictions of tunneling probabilities. The transmission coefficient
for a barrier of arbitrary shape, as specified by some potential energy function
U(x), can be found from Schrodinger’s equation. For high, wide barriers,
where the likelihood of penetration is small, a lengthy treatment yields the ap-
proximate result

T(E) ~ exp <—%\/2_mf VU(x) — E dx> (7.10)

The integral in Equation 7.10 is taken over the classically forbidden region
where E < U(x). A simple argument leading to this form follows by
representing an arbitrary barrier as a succession of square barriers, all of
which scatter independently, so that the transmitted wave intensity of
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7.2 BARRIER PENETRATION: SOME APPLICATIONS 239

one becomes the incident wave intensity for the next, and so forth (see
Problem 15).

The use of Equation 7.10 is illustrated in the remainder of this section,
where it is applied to several classic problems in contemporary physics.

Field Emission

In field emission, electrons bound to a metal are literally torn from the
surface by the application of a strong electric field. In this way, the metal
becomes a source that may be conveniently tapped to furnish electrons for
many applications. In the past, such cold cathode emission, as it was known,
was a popular way of generating electrons in vacuum tube circuits, producing
less electrical “noise” than hot filament sources, where electrons were “boiled
off” by heating the metal to a high temperature. Modern applications include
the field emission microscope (Fig. 7.6) and a related device, the scanning
tunneling microscope (see the essay at the end of this chapter), both of
which use the escaping electrons to form an image of structural details at the
emitting surface.

Field emission is a tunneling phenomenon. Figure 7.7a shows schematically
how field emission can be obtained by placing a positively charged plate near
the source metal to form, effectively, a parallel-plate capacitor. In the gap be-
tween the “plates” there is some electric field €, but the electric field inside
the metal remains zero due to the shielding by the mobile metal electrons at-
tracted to the surface by the positively charged plate. Note that an electron in
the bulk is virtually free, yet still bound to the metal by a potential well of
depth U. The total electron energy E, which includes kinetic energy, is nega-
tive to indicate a bound electron; indeed, | E| represents the energy needed to
free this electron, a value at least equal to the work function of the metal.

Once beyond the surface (x> 0), our electron is attracted by the electric
force in the gap, IF'= eE, represented by the potential energy U(x) = —eEx.
The potential energy diagram is shown in Figure 7.7b, together with the classi-
cally allowed and forbidden regions for an electron of energy E. The intersec-
tions of £ with U(x) at x; (= 0) and x9 (= —E/¢€) mark the classical turning
points, where a classical particle with this energy would be turned around to
keep it from entering the forbidden zone. Thus, from a classical viewpoint, an
electron initially confined to the metal has insufficient energy to surmount the
potential barrier at the surface and would remain in the bulk forever! It is only
by virtue of its wave character that the electron can tunnel through this barrier
to emerge on the other side. The probability of such an occurrence is
measured by the transmission coefficient for the triangular barrier depicted in

Figure 7.7b.

To calculate T(E) we must evaluate the integral in Equation 7.10 over the
classically forbidden region from x; to x9. Since U(x) = —e¢Ex in this region
and E = —eEx9, we have

JVU(x) _de:\/%fw X9 — x dx
0
x2:3@(ﬂ>3/2

2 .
N R TORNE
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Figure 7.6 Schematic diagram
of a field emission microscope.
The intense electric field at the
tip of the needle-shaped speci-
men allows electrons to tunnel
through the work function bar-
rier at the surface. Since the tun-
neling probability is sensitive to
the exact details of the surface
where the electron passes, the
number of escaping electrons
varies from point to point with
the surface condition, thus pro-
viding a picture of the surface
under study.

Tunneling model for field
emission
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Transmission coefficient for
field emission

Metal
+
— i
+
e—— T
[ ]
e—with / S — *
energy v
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+
I I
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I I
| (a) |
I I
I I
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0 ! : x Axis normal
T to metal surface
U(x) =—e€x
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I
I
x 0 Xo=—I/eE

Figure 7.7 (a) Field emission from a metal surface. (b) The potential energy seen
by an electron of the metal. The electric field produces the triangular potential
barrier shown, through which electrons can tunnel to escape the metal. Turning points
at x; = 0 and x9 = —E/e€ delineate the classically forbidden region. (Note that xo is
positive since E is negative.) Tunneling is greatest for the most energetic electrons, for
which |E| is equal to the work function ¢ of the metal.

Using this result in Equation 7.10 gives the transmission coefficient for field
emission as

(7.11)

_4V2_m|EI3/2}L)

T(E) = exp ({ — e

The strong dependence of T on electron energy E in the bulk is evident
from this expression. It is also apparent that the quantity in curly brackets
must have the dimensions of electric field and represents a characteristic field
strength—say, €. —for field emission:

4\2m|E|?/2

€= 3eh

(7.12)

The escape probability is largest for the most energetic electrons; these are the
ones most loosely bound and for which |E| = ¢, the work function of the
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Figure 7.8 Field emission microscope image of the surface of a crystalline platinum
alloy with a magnification of 3,000,000X. Individual atoms can be seen on surface lay-
ers using this technique. (Manfred Kage/Peter Arnold, Inc.)

metal. For |E| = ¢ = 4.0 €V, a typical value for many metals, we calculate the
characteristic field strength to be €. = 5.5 X 1019 V/m, a strong field by labo-
ratory standards. Measurable emission occurs even with much weaker fields,
however, since the emission rate depends on the product of the transmission
coefficient and the number of electrons per second that collide with the bar-
rier. This collision frequency is quite high for a bulk sample containing some-
thing like 10%? electrons per cubic centimeter, and values in excess of 103 col-
lisions per second per square centimeter are not uncommon (see Problem
18)! In this way field emission rates on the order of 10!” electrons per second
(currents of about 1 nA) can be realized with applied fields as small as €./50,
or about 10° V/m.

EXAMPLE 7.5 Tunneling in a
Parallel-Plate Capacitor

241

Estimate the leakage current due to tunneling that passes
across a parallel-plate capacitor charged to a potential
difference of 10 kV. Take the plate separation to be
d = 0.010 mm and the plate area to be A = 1.0 cm?.

Solution The number of electrons per second imping-
ing on the plate surface from the bulk is the collision fre-
quency f, about 1030 per second per square centimeter
for most metals. Of these, only the fraction given by the
transmission coefficient 7" can tunnel through the poten-
tial barrier in the gap to register as a current through the
device. Thus, the electron emission rate for a plate of

area 1 ecm? is
A= fT(E) = 1.0 X 10 exp(—E./E)

The electric field € in the gap is 10 kV/0.010 mm =
1.0 X 10°V/m. Using this and &.=5.5 X 10 V/m
gives for the exponential exp{—55} = 1.30 X 1072% and
an emission rate of A = 1.30 X 10% electrons per second.
Since each electron carries a charge ¢ = 1.60 X 10719 C,
the tunneling current is

I=21X10"13A =021 pA
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a Decay

The decay of radioactive elements with the emission of « particles (helium nu-
clei composed of two protons and two neutrons) was among the long-standing
puzzles to which the fledgling field of wave mechanics was first applied shortly
after its inception in 1926. That « particles are a disintegration product of
such species as radium, thorium, and uranium was well documented as early as
1900, but certain features of this decay remained a mystery, finally unraveled
in 1928 in the now-classic works of George Gamow and R. W. Gurney and
E. U. Condon. Their contribution was to recognize that the newly discovered
tunnel effect lay behind the two most puzzling aspects of a decay:

¢ All a particles emitted from any one source have nearly the same energy
and, for all known emitters, emerge with kinetic energies in the same nar-
row range, from about 4 to 9 MeV.

® In contrast to the uniformity of energies, the half-life of the emitter (time
taken for half of the emitting substance to decay) varies over an enor-
mous range—more than 20 orders of magnitude! —according to the
emitting element (Table 7.1).

For instance, alphas emerge from the element thorium with kinetic energy
equal to 4.05 MeV, only a little less than half as much as the alphas emitted
from polonium (8.95 MeV). Yet the halflife of thorium is 1.4 X 101° years,
compared with only 3.0 X 1077 seconds for the half-ife of polonium!

Gamow attributed this striking behavior to a preformed « particle rattling
around within the nucleus of the radioactive (parent) element, eventually tun-
neling through the potential barrier to escape as a detectable decay product
(Fig. 7.9a). While inside the parent nucleus, the « is virtually free, but nonethe-
less confined to the nuclear potential well by the nuclear force. Once outside
the nucleus, the « particle experiences only the Coulomb repulsion of the
emitting (daughter) nucleus. (The nuclear force on the « outside the nucleus
is insignificant due to its extremely short range, =107 !° m.) Figure 7.9b shows
the potential-energy diagram for the « particle as a function of distance r from
the emitting nucleus. The nuclear radius R is about 107" m, or 10 fm [note
that 1 fm (fermi) = 107!® m] for heavy nuclei?; beyond this there is only the
energy of Coulomb repulsion, U(7) = kqyq9/7, between the doubly charged «

Table 7.1 Characteristics of Some
Common « Emitters

Element o Energy Half-Life*
23po 8.95 MeV 998 X 1077 s
280Cm 6.40 MeV 27 days
220Ra 4.90 MeV 1.60 X 10% yr
%5 Th 4.05 MeV 1.41 X 10" yr

*Note that half-lives range over 24 orders of magni-
tude when « energy changes by a factor of 2.

>The fermi (fm) is a unit of distance commonly used in nuclear physics.
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Nucleus (+Ze) Alpha particle (+2¢)

[ ]
<

(a)

U(r)

U(r) = 2kZe*/ 7

Alphaparticle| | N~ o

cannot escape | o—| | E  Kinetic energy

(classically) | of escaping
I alpha particle
I
|
0 | r
R R, =2kZe?*/E
Nuclear
radius
(b)

Figure 7.9 (a) a decay of a radioactive nucleus. (b) The potential energy seen by an
@ particle emitted with energy E. R is the nuclear radius, about 1074 m, or 10 fm.
a particles tunneling through the potential barrier between R and R; escape the nu-
cleus to be detected as radioactive decay products.

(q1 = +2¢) and a daughter nucleus with atomic number Z (g9 = + Ze). Classi-
cally, even a 9-MeV « particle initially bound to the nucleus would have insuffi-
cient energy to overcome the Coulomb barrier (=30 MeV high) and escape.
But the «a particle, with its wave attributes, may tunnel through the barrier to ap-
pear on the outside. The total a particle energy E inside the nucleus becomes
the observed kinetic energy of the emerging a once it has escaped. It is the
sensitivity of the tunneling rate to small changes in particle energy that
accounts for the wide range of half-lives observed for « emitters.

The tunneling probability and associated decay rate are calculated in much
the same way as for field emission, apart from the fact that the barrier shape
now is Coulombic, rather than triangular. The details of this calculation are
given in Example 13.9 (Chapter 13), with the result

/E [ 2R
T(E) = exp {—4772 ?0 +8 —;} (7.13)

In this expression, ry = 12/ myke? is a kind of “Bohr” radius for the « particle.
The mass of the a particle is m, = 7295m,, so 7y has the value ay/7295 =
7.95 X 1072 A, or 7.25 fm. The length 7y, in turn, defines a convenient energy
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unit £y analogous to the Rydberg in atomic physics:

2 2
By = _ < he ><ﬂ> = (15.6 eV) (7295) = 0.0993 MeV
279 2a9 /\ 79

To obtain decay rates, 7(E) must be multiplied by the number of collisions
per second that an « particle makes with the nuclear barrier. This collision
frequency fis the reciprocal of the transit time for the «a particle crossing the
nucleus, or f= v/2R, where vis the speed of the « particle inside the nucleus.
In most cases, fis about 10%! collisions per second (see Problem 17). The
decay rate A (the probability of a emission per unit time) is then

A = fT(E) =~ 102! exp{—4m7Z\Ey/E + 8\NZ(R/n))

The reciprocal of A has dimensions of time and is related to the half-life of the

emitter # /9 as

EXAMPLE 7.6 Estimating the Half-lives of
Thorium and Polonium

Using the tunneling model just developed, estimate the
half-lives for a decay of the radioactive elements tho-
rium and polonium. The energy of the ejected alphas is
4.05 MeV and 8.95 MeV, respectively, and the nuclear
size is about 9.00 fm in both cases.

Solution For thorium (Z = 90), the daughter nucleus
has atomic number Z = 88, corresponding to the ele-
ment radium. Using £ = 4.05 MeV and R = 9.00 fm, we
find for the transmission factor 7(E) in Equation 7.13

exp{—47r(88)\/(0.0993/4.05) + 8\/88(9.00/7.25)}
= exp{—89.542} = 1.3 X 10%
Taking /= 102! Hz, we obtain for the decay rate the
value A = 1.29 X 10718 alphas per second. The associ-
ated half-life is, from Equation 7.14,
0.693

ljg=———==54X10"7s=1.7x 1010
V2T B X 10 ’ .

which compares favorably with the actual value for tho-
rium, 1.4 X 1019 yr.

In2 0.693
lyg = T (7.14)

If polonium (Z = 84) is the radioactive species, the
daughter element is lead, with Z = 82. Using for the dis-
integration energy I' = 8.95 MeV, we obtain for the trans-
mission factor

exp(—4m(82)V(0.0993/8.95 + 8V82(9.00/7.25)}
= exp{—27.825} = 8.2 X 1071

Assuming fis unchanged at 10%! collisions per second, we
get for this case A = 8.2 X 108 alphas per second and a
half-life

0.693

ly/9 = m =84 X 107105

The measured half-ife of polonium is 3.0 X 1077 s.

Given the crudeness of our method, both estimates
should be considered satisfactory. Further, the calcula-
tions show clearly how a factor of only 2 in disintegration
energy leads to halflives differing by more than 26 or-
ders of magnitude!

The radioactive decay process also can be understood in terms of

the time evolution of a nonstationary state, in this case one representing the «
particle initially confined to the parent nucleus. Solving the Schrodinger equa-
tion for the time-dependent waveform in this instance is complicated, making
numerical studies the option of choice here. The interested reader is referred
to our companion Web site for further details and a fully quantum-mechanical

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.



7.2 BARRIER PENETRATION: SOME APPLICATIONS 245

simulation of a decay from an unstable nucleus. Go to http://info.brookscole.
com/mp3e, select QMTools Simulations — Leaky Wells (Tutorial) and follow
the on-site instructions.

Ammonia Inversion

The “inversion” of the ammonia molecule is another example of tunneling,
this time for an entire atom. The equilibrium configuration of the ammonia
(NHj3) molecule is shown in Figure 7.10a: The nitrogen atom is situated at
the apex of a pyramid whose base is the equilateral triangle formed by the
three hydrogen atoms. But this equilibrium is not truly stable; indeed, there
is a second equilibrium position for the nitrogen atom on the opposite side
of the plane formed by the hydrogen atoms. With its two equilibrium loca-
tions, the nitrogen atom of the ammonia molecule constitutes a double  Double oscillator
oscillator, which can be modeled by using the potential shown in Figure  representation of the
7.10b. A nitrogen atom initially located on one side of the symmetry plane  ammonia molecule
will not remain there indefinitely, since there is some probability that it can
tunnel through the oscillator barrier to emerge on the other side. When this
occurs, the molecule becomes inverted (Fig. 7.10c). But the process does not
stop there; the nitrogen atom, now on the opposite side of the symmetry
plane, has a probability of tunneling back through the barrier to take up its
original position! The molecule does not just undergo one inversion, but
flip-flops repeatedly, alternating between the two classical equilibrium con-
figurations. The “flopping” frequency is fixed by the tunneling rate and
turns out to be quite high, on the order of 10! Hz (microwave range of the
electromagnetic spectrum)!
We can estimate the tunneling probability for inversion using Equation
7.10. The double oscillator potential of Figure 7.10b is described by the poten-
tial energy function

U(x)
(Nitrogen atom)

I Axis normal

Ta 0 t@  to symmetry I
Symmetry plane
plane

(a) (b) (c)

Figure 7.10 (a) The ammonia molecule NHs. At equilibrium, the nitrogen atom is sit-
uated at the apex of a pyramid whose base is the equilateral triangle formed by the three
hydrogen atoms. By symmetry, a second equilibrium configuration exists for the nitrogen
atom on the opposite side of the plane formed by the hydrogen atoms. (b) The potential
energy seen by the nitrogen atom along a line perpendicular to the symmetry plane. The
two equilibrium points at —a and +a give rise to the double oscillator potential shown. A
nitrogen atom with energy E can tunnel back and forth through the barrier from one
equilibrium point to the other, with the result that the molecule alternates between the
normal configuration in (a) and the inverted configuration shown in (c).
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Ulx) = §Mw*(| x| — a)? (7.15)

with o the classical frequency of vibration for the nitrogen atom around either
of the equilibrium points x = *a. We suppose the nitrogen atom possesses the
minimum energy of vibration, £ = %hw. There are four classical turning points
for which U(x) = E (see Fig. 7.10b); the limits for the tunneling integral are
the pair closest to x = 0, and these are given by x = = (a — A), where A is the
vibration amplitude for the nitrogen atom in a single oscillator well. The vibra-
tion amplitude A is found from energy conservation by recognizing that here
all the energy is in potential form: %ﬁa) = %MwQAQ, or

[#
A=\ (7.16)

Since the tunneling integral is symmetric about x = 0, we may write it as

a—A

a—4 4 - .
%\Ime \/U(x)—de=? (x — a)? — A? dx
—(a—A) 0

where U(x) and E have been expressed in terms of A, using Equation 7.16.
The integral on the right can be evaluated in terms of hyperbolic functions,?
with the result

4 [o=A
FJ Vix— a2 — A2dx= sinh(2y0) — 2yo0
0

where jy is defined by the relation cosh(yy) = a/A. The transmission coeffi-
cient is then

T = ¢ [sinh(2yp) —2y] (7.17)

To get the tunneling rate A (and its reciprocal —the tunneling time), we must
multiply 7" by the frequency with which the nitrogen atom collides with the po-
tential barrier. For an atom vibrating about its equilibrium position, this is the
vibration frequency f= w/27. From Equation 7.16, we see that fis related to
the vibration amplitude as f = #/27MA.

The tunneling rate depends sensitively on the values chosen for a and A.
For the equilibrium distance from the symmetry plane, we take @ = 0.38 A, an
experimental value obtained from x-ray diffraction measurements.* The vibra-
tion amplitude A is not directly observable, but its value can be calculated
from U(0), the height of the potential barrier at x = 0, which is known to be
0.25690 eV. Using Equations 7.15 and 7.16, and taking M = 14 u for the mass
of the nitrogen atom, we find
( f2a? )1/4 a ( (1.973 keV-A/)2(0.38A)2 )1/4

2MU(0) 2(14) (931.50 X 10% keV/¢?) (0.2569 X 1073 keV)
= 0.096A
3Introduce a new integration variable y with the substitution x — @ = —A cosh (y), and use the prop-

erties of the hyperbolic cosine and sine functions, cosh (y) = %(ey + ¢77),sinh (y) = %(ey —¢7), to
obtain the final form.

B. H. Bransden and C. J. Joachain, Physics of Aloms and Molecules, New York, John Wiley and Sons,
Inc., 1983, p. 456.
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This underestimates the true value for A because we have (incorrectly) identi-
fied M as the mass of the nitrogen atom. In fact, M should be the reduced mass
of the nitrogen—hydrogen group, about 2.47 u.5 With this correction, we find
A =0.148 A and a tunneling rate A = fT'~ 2.4 X 10'2 Hz. The observed tun-
neling rate, 2.4 X 10! Hz, suggests a somewhat smaller value for A. By trial
and error, we find the actual tunneling rate is reproduced with A = 0.125 A,
still a reasonable figure for the vibration amplitude of the nitrogen atom in
the ammonia molecule.

Notice that because of tunneling, the nitrogen atom on one side of
the symmetry plane or the other does not constitute a stationary state of the
ammonia molecule, since the probability for finding it there changes over
time. In fact, the flopping behavior stems from a simple combination of two
stationary states of nearly equal energy for the nitrogen atom in this environ-
ment. Such superpositions of closely spaced (in energy) stationary states have
applications that transcend this one example and are the subject of a com-
puter-based tutorial available at our companion Web site. For more informa-
tion, go to http://info.brookscole.com/mp3e, select QMTools Simulations —
Two-Center Potentials (Tutorial), and follow the on-site instructions.

Since the flopping frequency is in the microwave range, the ammonia mole-
cule can serve as an amplifier for microwave radiation. The ammonia maser
operates on this principle. Because of the small energy difference between the
ground and first excited states of the ammonia molecule, ammonia vapor at
room temperature has roughly equal numbers of molecules in both states.
Having opposite electric dipole moments, these states are easily separated by
passing the vapor through a nonuniform electric field. In this way, ammonia
vapor can be produced with the unusually large concentrations of excited
molecules needed to create the population inversion necessary for maser op-
eration. A spontaneous deexcitation to the ground state of one molecule re-
leases a (microwave) photon, which, in turn, induces other molecules to deex-
cite. The result—much like a chain reaction—produces a photon cascade: an
intense burst of coherent microwave radiation. The operation of masers and
lasers is discussed in more detail in Chapter 12 and on our website at
http://info.brookscole.com/mp3e.

Decay of Black Holes

Once inside the event horizon, nothing—not even light—can escape the
gravitational pull of a black hole.® That was the view held until 1974, when the
brilliant British astrophysicist Stephen Hawking proposed that black holes are
indeed radiant objects, emitting a variety of particles by a mechanism involv-
ing tunneling through the (gravitational) potential barrier surrounding the
black hole. The thickness of this barrier is proportional to the size of the black
hole, so that the likelihood of a tunneling event initially may be extremely
small. As the black hole emits particles, however, its mass and size steadily

5In this mode of vibration, all three hydrogen atoms move in unison as if they were a single object
with mass 3 u. The reduced mass refers to the pair consisting of this total mass and the mass of
the nitrogen atom (14 u).

5A brief introduction to black holes is found in Clifford Will’s essay “The Renaissance of General
Relativity” on our companion Web site.
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Image not available due to copyright restrictions

decrease, making it easier for more particles to tunnel out. In this way emis-
sion continues at an ever-increasing rate, until eventually the black hole radi-
ates itself out of existence in an explosive climax! Thus, Hawking’s scenario
leads inexorably to the decay and eventual demise of any black hole.

Calculations indicate that a black hole with the mass of our Sun would survive
against decay by tunneling for about 10% years. On the other hand, a black hole
with the mass of only a billion tons and roughly the size of a proton (such mini
black holes are believed to have been formed just after the Big Bang origin of
the Universe) should have almost completely evaporated in the 10 billion years
that have elapsed since the time of creation, and black holes a few times heavier
should still be evaporating strongly. A large portion of the energy emitted by
such holes would be in the form of gamma rays. Indeed, gamma rays from inter-
stellar space have been observed, but in quantities and with properties that are
readily explained in other ways. Currently there is no compelling observational
evidence of black-hole evaporation in the Universe today.

SUMMARY

For potentials representing barriers, the stationary states are not localized, but
extend throughout the entire space in a manner that describes particle scat-
tering. When a matter wave encounters a potential barrier, part of the wave is
reflected by the barrier and part is transmitted through the barrier. In particle
language, an object colliding with the barrier does not predictably rebound or
penetrate, but can only be assigned probabilities for reflection and transmis-
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