Chapter 29

1- A proton that has velocity $\mathrm{v}=(3.0 * 10 * * 6 \mathbf{i}-2.0 * 10 * * 6 \mathbf{j}) \mathrm{m} / \mathrm{s}$ moves in a magnetic field $B=(0.50 i) T$. Find the force on the proton. $\left[1.6 * 10^{* *}(-13) \mathrm{kN}\right]$

2- An electric field of $1.5 * 10 * * 3 \mathrm{~V} / \mathrm{m}$ and a magnetic field of 0.50 T act on a moving electron to produce no net force. Calculate the minimum speed of the moving electron.[3.0*10**3 m/s]

3- What uniform magnetic field, applied perpendicular to a beam of electrons moving at $1.4 * 10 * * 6 \mathrm{~m} / \mathrm{s}$ is required to make the electrons travel in a circular orbit of radius 0.40 m ? $\left[2.0 * 10^{* *}(-5) \mathrm{T}\right]$

4- The magnitude of the magnetic field at 88.0 cm from the axis of an infinitely long wire is $7.30 * 10 * *(-6) \mathrm{T}$. What is the current in the wire? [32.1 A]

5- In the figure, a loop of wire carrying a current, I, of 3.0 A is in the shape of a right triangle with two equal sides, each 2.0 m long. A 2.0 T uniform magnetic field is in the plane of the triangle and is parallel to the hypotenuse. The resultant torque on the loop is: $12 \mathrm{~N} * \mathrm{~m}$.

6- A straight horizontal length of copper wire is located in a place where the magnetic field of the earth $\mathrm{B}=0.5 * 10 * *(-4) \mathrm{T}$ (see the figure). What minimum current in the wire is needed to balance the gravitational force on the wire? [The linear density of the wire is $60.0 \mathrm{gram} / \mathrm{m}][1.2 * 10 * * 4$ A into the page]

7- At one instant an electron is moving with a velocity: $v=\left(5 * 10^{* * 5} \mathbf{i}+3 * 10 * * 5 \mathbf{j}\right) \mathrm{m} / \mathrm{s}$ in a magnetic field of $\mathrm{B}=(0.8 \mathbf{i}) \mathrm{T}$. At that instant the magnetic force on the electron is: [3.8*10** $(-14) \mathrm{k} \mathrm{N}$]

8- An electron that has velocity $\mathrm{v}=3.2 * 10 * * 7 \mathbf{i} \mathrm{~m} / \mathrm{s}$ traveling parallel to a uniform magnetic field of strength $2.60 * 10^{* *}(-3)$ Tesla. The force on the electron is: [zero]

9- An electron moving at right angle to a uniform magnetic field completes a circular orbit in $10 * *(-8) \mathrm{s}$. What is the magnitude of the magnetic field. [3.6*10**(-3) T]

10- At a point in a uniform magnetic field the acceleration of an electron is $5.0 * 10 * * 14$ $\mathrm{m} / \mathrm{s}^{* *} 2$ and its speed is $7.0 * 10 * * 6 \mathrm{~m} / \mathrm{s}$. If the magnitude of the magnetic field is 1.0 mT , what is the angle between the electron's velocity and the magnetic field? [24 degrees]

11- A proton moves with constant velocity, $\mathrm{v}=\left(8.0^{*} 10 * * 5 \mathrm{~m} / \mathrm{s}\right)$ i, through crossed electric and magnetic fields. If the magnetic field is $\mathrm{B}=(2.5 \mathrm{mT}) \mathbf{j}$, what is the electric field? [(-2.0 kV/m) k]

