Chapter 26

1- Consider the circuit shown in the figure. If $\mathrm{C} 1=1$ micro F , $\mathrm{C} 2=6$ micro F and $\mathrm{C} 3=3$ micro F , what is the charge on C3? [3 micro C]

2- A 2.5 micro F capacitor, C 1 , is charged to a potential difference $\mathrm{V} 1=10 \mathrm{~V}$, using a 10 V battery. The battery is then removed and the capacitor is connected to an uncharged capacitor, C 2 , with capacitance of 10 micro F . What is the potential difference across C 1 and C 2 , respectively? [2 V, 2 V]

3- A parallel-plate capacitor has a plate area of $0.2 \mathrm{~m}^{2}$ and a plate separation of 0.1 mm . If the charge on each plate has a magnitude of $4.0 * 10^{-6} \mathrm{C}$ the electric field between the plates is approximately: [2.3*106 V / m.]

4- A 2 micro- F and a 1 micro- F capacitor are connected in series and a potential difference is applied across the combination. What is the ratio of the potential difference across each of them? [The 2 micro-F capacitor has half the potential difference of the 1 micro-F capacitor]

5- Capacitors A and B are identical. Capacitor A is charged so it stores 4 J of energy and capacitor B is uncharged. The capacitors are then connected in parallel. The total stored energy in the capacitors is now: [2 Joules].

6- Find the equivalent capacitance of three capacitors connected in series. Assume the three capacitors are: $\mathrm{C} 1=2.00$ micro-F, $\mathrm{C} 2=4.00$ micro-F and $\mathrm{C} 3=8.00$ micro-F. [1.14 micro-F].

7- An air filled parallel-plate capacitor has a capacitance of $1.00 * 10^{-12} \mathrm{~F}$. The plate separation is then doubled and a wax dielectric is inserted, completely filling the space between the plates. As a result the, capacitance becomes $2.00 * 10^{-12} \mathrm{~F}$. The dielectric constant of the wax is: [4.00]

8- In figure (2), find the charge stored by the capacitor C3 if the potential difference across the battery is 10.0 V . Use the values $\mathrm{C} 1=\mathrm{C} 2=2.0$ micro-F and C3 $=4.00$ micro-F. [20 micro-C]

9- Two concentric spherical shells of radii 10 cm and 5.0 cm are charged to a potential difference of 20 V . How much energy is stored in this spherical capacitor? $\left[2.2 * 10^{-9} \mathrm{~J}\right]$

10- A parallel-plate air-filled capacitor, of area $25 \mathrm{~cm}^{* * 2}$ and plate separation of 1.0 mm , is charged to a potential difference of 600 V . Find the energy density between the plates. $\left[1.6 \mathrm{~J} / \mathrm{m}^{3}\right]$

11- A parallel-plate capacitor has an area A and a separation d. Find its capacitance if it is filled with two dielectrics as shown in figure 3. [Co is the capacitance of the air-filled parallel-plate capacitor. $\mathrm{K} 1=3$ and $\mathrm{K} 2=1.5$ are the dielectric constants] [$2 * \mathrm{Co}$]

