Chapter 25

1- An infinite nonconducting sheet has a surface charge density $0.10^{*} 10 * *(-6) \mathrm{C} / \mathrm{m}^{* *} 2$ on one side. How far apart are equipotential surfaces whose potentials differ by 90 V ? [1.6 cm.]

2- Two equal charges, each of 0.12 C , are separated by a distance of 1.8 m . What is the work done, by an external agent, to bring a charge of 0.15 C from infinity to the midpoint between the two charges? [3.6*10**8 J.]

3- Consider a metallic sphere carrying a charge of $4.0 * 10^{* *}(-8) \mathrm{C}$ and having a potential of 400 V . Find the diameter of the sphere.. [1.8 m.]

4- What is the external work required to bring four $2.0 * 10 * *(-9)$ C point charges from infinity and to place them at the corner of a square of side 0.14 m ? [1.4*10**(-6) Joule.]

5- In figure, Q1 $=2.0^{*} 10^{* *}(-6) \mathrm{C}$ and $\mathrm{Q} 2=-2.0^{*} 10^{* *}(-6) \mathrm{C}$. What is the external work needed to move a charge $\mathrm{Q}=-4.0^{*} 10^{* *}(-6)$ C at constant speed from point A at the center of the square to point B at the corner? [Zero.]

6- The electric potential at points in the xy -plane is given by: $\mathrm{V}=(\mathrm{x} * * 3-2 * x * y)$ Volts, where x and y are in meters. The magnitude of the electric field at the point with the coordinates $\mathrm{x}=1 \mathrm{~m}$ and $\mathrm{y}=2 \mathrm{~m}$ is:
 [Sqrt(5) V/m.]

7- In figure, what is the net potential at point P due to the four point charges if $\mathrm{V}=0$ at infinity ? [take $\mathrm{d}=2 \mathrm{~cm}, \mathrm{q}=1.0$ micro-C]. [9.0*10**5 V.]

8- Two balls with charges 5.0 micro-C and 10 micro-C
 are at a distance of 1.0 m from each other. In order to reduce the distance between them to 0.5 m the amount of work to be performed is: [0.45 J.]

9- Find the electrostatic potential at $\mathrm{x}=0$ for the following distribution of charges:- 2 q at $\mathrm{x}=10 \mathrm{~cm}$ and -2 q at $\mathrm{x}=-10 \mathrm{~cm}$. [Take $\mathrm{q}=1.0 * 10 * *(-9) \mathrm{C}$, and the electrostatic potential at infinity $=0$] [-360 V.$]$

10- Three point charges are initially infinitely far apart. Two of the point charges are identical and have charge Q . If zero net work is required to assemble the three charges at the corners of an equilateral triangle of side d, then the value of the third charge is $[-Q / 2$.

11- Consider two concentric conducting shells of radii (a) and (b), b > a. The smaller (inner) shell has a positive charge (q) and the larger (outer) shell has a charge (Q). If the potential of the inner shell is zero, what is the value of Q ? $[\mathrm{Q}=-\mathrm{b} * \mathrm{q} / \mathrm{a}$.]

