Chapter 24

1- Calculate the electric flux (phi) through the curved surface of a cone of base radius R and height h. The electric field E is uniform and perpendicular to the base of the cone, and the field lines enter through the base. The cone has no charge enclosed in it. [$\pi \mathrm{R}^{2} \mathrm{E}$.]

2- A point charge of -50 e lies at the center of a hollow spherical metal shell that has a net charge of -100 e . Calculate the charge on the)a) shell's inner surface, and (b) on its outer surface. [e is the magnitude of the charge on the electron.[(a) 50e b) -150e].

3- A point charge of 2.0 micro-C is placed at the center of a cube 50 cm on edge. What is the flux through the bottom surface? [3.8* $10 * * 4 \mathrm{~N} * \mathrm{~m} * * 2 / \mathrm{C}$.]

4- An isolated conductor of arbitrary shape has a net charge of $-15^{*} 10^{* *}(-6) \mathrm{C}$. Inside the conductor is a cavity within which is a point charge $q=-5.0^{*} 10^{* *}(-6) C$. What is the charge on the cavity-wall, $\mathrm{q}(\mathrm{in}$), and what is the charge on the outer surface of the conductor, q (out)? $\left[\mathrm{q}(\right.$ in $)=5.0^{*} 10^{* *}(-6) \mathrm{C} ; \mathrm{q}($ out $)=-20^{*} 10^{* *}(-6) \mathrm{C}$.]

5- For the two infinite dielectric sheets, see figure find the magnitude of the electric field at a point P. Consider that each sheet has a positive surface charge density of $10^{2} \mathrm{C} / \mathrm{m}^{2}$. [$1.1^{*} 10^{* *} 13 \mathrm{~N} / \mathrm{C}$.]

6- A point charge of +4.0 micro-C lies at the center of a hollow spherical conducting shell that has a net charge of -13.0 micro-C. If the inner radius of the shell is 2.0 cm
 and the outer radius is 3.0 cm , then the ratio between the charge density on the inner surface to the charge density on the outer surface is: [1:1.]

7- A cube, as in figure, has an edge length of 3.00 m in a region of a uniform electric field given by the equation: $E=(-5.00 j+6.00 \mathrm{k}) \mathrm{N} / \mathrm{C}$, where i, j, and k are the unit vectors in the directions of x, y, and z respectively. Find the electric flux through the top face (shaded). [-45 N*m**2/C.]

8- A point charge, $\mathrm{q} 1=-2.0 * 10^{* *}(-6) \mathrm{C}$, is placed inside a cube of side 5.0 cm , and another point charge $\mathrm{q} 2=3.0^{*} 10^{* *}(-6) \mathrm{C}$ is placed outside the cube. Find the net electric flux through the surfaces of the cube. $[-2.3 * 10 * * 5 \mathrm{~N} \mathrm{~m} * * 2 / \mathrm{C}]$

9- Figure shows portions of two large, parallel, nonconducting sheets, A and B . The surface charge densities are: sigma $1=-4.5$ micro- $\mathrm{C} / \mathrm{m}^{2}$ and sigma $2=-6.5 \mathrm{micro}-\mathrm{C} / \mathrm{m}^{* * 2}$. Find the electric field at any point

10- A hollow metallic sphere, of radius 2.0 cm , is filled with a non-conducting material which carries a charge of 5.0 pico-C distributed uniformly throughout its volume. What is the magnitude of the electric field 1.5 cm from the center of the sphere? [84 N/C.]

