## Chapter 21

1- An ideal engine, whose low-temperature reservoir is at 27 degrees Celsius, has an efficiency of $20 \%$. By how much should the temperature of the high-temperature reservoir be increased to increase the efficiency to $50 \%$ ? [225 K.]

2- An ideal monatomic gas is confined to a cylinder by a piston. The piston is slowly pushed in so that the gas temperature remains at 27 degree C. During the compression, 750 J of work is done on the gas. The change in the entropy of the gas is:[-2.5 J/K.]

3- Five moles of an ideal monatomic gas are taken though the cycle shown in the Figure. Calculate the efficiency of the cycle. [0.17]

4- Five moles of an ideal gas undergo a reversible isothermal compression from volume V to volume
 $\mathrm{V} / 2$ at temperature 30 degrees C . What is the change in the entropy of the gas? [-29 J/K.]

5- An automobile engine operates with an overall efficiency of $20 \%$. How many gallons of gasoline is wasted for each 10 gallons burned? [8]

6- One mole of a monatomic ideal gas is taken from an initial state (i) to a final state (f) as shown in figure. The curved line is an isotherm. Calculate the increase in entropy of the gas for this process. [36.5 J/K.]

7- One mole of a diatomic ideal gas is taken through the cycle shown in Figure. Process b-c is adiabatic, $\mathrm{Pa}=0.3 \mathrm{~atm}, \mathrm{~Pb}=3.0 \mathrm{~atm}$, $\mathrm{Vb}=1.0^{*} 10^{* *}(-3) \mathrm{m}^{* *} 3$, and $\mathrm{Vc}=4.0^{*} \mathrm{Vb}$. What is the efficiency of the cycle? [53\%.]

8- You mix two samples of water, A and B.
Sample A is 100 g at 20 degree-C and sample B is
 also 100 g but at 80 degree-C. Calculate the change in the entropy of sample B.[-8.9 cal/K]

9- What mass of water at 0 degrees- C can a freezer make into ice cubes in one hour, if the coefficient of performance of the refrigerator is 3.0 and the power input is 0.2 Kilowatt? [ 6.5 kg ]

10- An ideal heat engine has a power output of 200 W . The engine operates between two reservoirs at 300 K and 600 K . How much energy is absorbed per hour? [1.44*10**6 J]

