Chapter 17

1- The equation for a standing wave is given by:
$y=4.00^{*} 10^{* *}(-3) \sin (2.09 x) \cos (60.0 \mathrm{t})$ (SI units).
What is the distance between two consecutive antinodes? [1.50 m]
2- A string under a tension of 15 N , is set into vibration to produce a wave of speed $20 \mathrm{~m} / \mathrm{s}$, and a maximum transverse speed of $8 \mathrm{~m} / \mathrm{s}$. For this wave, the average power is: [24 W]

3- Standing waves are produced in a string at the two consecutive resonant frequencies 155 and 195 Hz . If the mass of the string is 5.00 g and its length is 0.80 m , then the tension applied to the string should be: [25.6 N]

4- A transverse wave in a 3.0 m long string is given by the harmonic wave equation:

$$
\mathrm{y}=0.4^{*} \cos \left[\mathrm{pi}^{*}(\mathrm{x} / 4+6 \mathrm{t})\right] \text { (SI units) }
$$

If the string is kept under a constant tension of 70 N , find the power transmitted to the wave. [83 W]

5- A sinusoidal wave traveling in the positive x direction has an amplitude of 10 cm , a wavelength of 20 cm , and a frequency of 5.0 Hz . A particle at $x=0$ and $t=0$ has a displacement of 10 cm . Write the equation of the displacement of the particles as a function of x and $t .\left[y=(0.1 \mathrm{~m}) * \sin \left[\mathrm{pi}^{*}(10 x-10 \mathrm{t}-3 / 2)\right]\right]$

6- A harmonic wave is described by $y=0.2 * \sin (25 x-10 t)$ (SI units). How far does a wave crest move in 20 sec ? [8 m]

7- The equation of a wave traveling along a string, under a tension of 10 N , is given by:
$\mathrm{y}=(6.0 \mathrm{~cm}) \sin \left(0.02 * \mathrm{pi}^{*} \mathrm{x}+40.0 * \mathrm{pi}^{*} \mathrm{t}\right)$, where x is in centimeters and t is in seconds. Determine the mass per unit length of the string. [25 g/m]

8- A transverse sinusoidal wave traveling in the negative x direction has an amplitude of 10.0 cm , a wavelength of 20.0 cm , and a frequency of 8.00 Hz . Write the expression for y as a function of $x($ in meters) and $t(i n$ seconds) if $y(0,0)=10.0 \mathrm{~cm}$. [y $\left.=(0.1 \mathrm{~m}) \sin \left[31.4^{*} \mathrm{x}+50.3^{*} \mathrm{t}+(\mathrm{pi} / 2)\right]\right]$

9- A sinusoidal wave is described as: $\mathrm{y}=(0.1 \mathrm{~m}) * \sin \left[10 * \mathrm{pi}^{*}(\mathrm{x} / 5+\mathrm{t}-3 / 2)\right]$, where x is in meters and t is in seconds. What are the values of its frequency(f), and its velocity (v)? [$\mathrm{f}=5 \mathrm{~Hz}, \mathrm{v}=5 \mathrm{~m} / \mathrm{s}$ moving in -x-direction.]
$10-$ A $100-\mathrm{Hz}$ oscillator is used to generate a sinusoidal wave, on a string, of wavelength 10 cm . When the tension in the string is doubled, the oscillator produces a wave with a frequency and wavelength of: [100 Hz and 14 cm]

11- The lowest resonant frequency, in a certain string clamped at both ends, is 50 Hz . When the string is clamped at its midpoint, the lowest resonant frequency is:[100 Hz]

