1 Q0 One mole of a monatomic ideal gas is taken from an initial state
21 Q0 (i) to a final state (f) as shown in figure 1. The curved
Q0 line is an isotherm. Calculate the increase in entropy
Q0 of the gas for this process.
Q0
A1 $36.5 \mathrm{~J} / \mathrm{K}$.
A2 $1.25 \mathrm{~J} / \mathrm{K}$.
A3 $25.0 \mathrm{~J} / \mathrm{K}$.
A4 $22.5 \mathrm{~J} / \mathrm{K}$.
A5 $11.2 \mathrm{~J} / \mathrm{K}$.
Q0
Q0 One mole of a diatomic ideal gas is taken through the cycle
Q0 shown in Figure 2. Process $b->c$ is adiabatic, $P a=0.3 \mathrm{~atm}$,
Q0 $\mathrm{Pb}=3.0 \mathrm{~atm}, \mathrm{Vb}=1.0^{*} 10^{* *}(-3) \mathrm{m}^{* *} 3$, and $\mathrm{Vc}=4.0 * \mathrm{Vb}$.
Q0 What is the efficiency of the cycle?
Q0
A1 53\%
A2 34%.
A3 28%.
A4 74\%
A5 12\%
Q0
3 Q
s 100 g
at 20 degree- C and sample B is also 100 g but at 80 degree- C.
21 Q0 Calculate the change in the entropy of sample B.
Q0
A1 - $8.9 \mathrm{cal} / \mathrm{K}$.
A2 $8.9 \mathrm{cal} / \mathrm{K}$.
A3
A4

- $9.7 \mathrm{cal} / \mathrm{K}$. $9.7 \mathrm{cal} / \mathrm{K}$ zero.
Q0
4 Q0 What mass of water at 0 degrees-C can a freezer make into ice
21 Q0 cubes in one hour, if the coefficient of performance of the
Q0 refrigerator is 3.0 and the power input is 0.2 Kilowatt?
Q0
A1
6.5 kg .
9.2 kg .
1.9 kg .
0.4 kg .
3.0 kg .

Q0
5 Q0
21 Q0
A1 For an adiabatic process the change in entropy is zero if it
1 is done reversibly.
For an adiabatic process the change in entropy is negative if it is done irreversibly.
For an isothermal expansion the change in entropy of an ideal gas is zero.
A Carnot engine does not reject any heat as waste.
The efficiency of a Carnot engine is 100\%.
Q0
6 Q0 In figure 3, $\mathrm{Q}=60$ micro-C, $\mathrm{q}=20 \mathrm{micro}-\mathrm{C}, \mathrm{a}=3.0 \mathrm{~m}$,
22 Q0 and $b=4.0 \mathrm{~m}$. Calculate the total electric force
Q0 on q. [i and j are the unit vectors in the positive direction
Q0 of x-axis and y-axis, respectively].

```
    Q0
    A1
    A2
    A3
    A4
    A5
    Q0
\[
-2.3 * 10 * * 5 \mathrm{~N} \mathrm{m**} 2 / \mathrm{C}
\]
```

```
    +3.4*10**5 N m**2/C
    1.1*10**7 N m**2/C
    -1.1*10**5 N m**2/C
    2.3*10**5 N m**2/C
```

24 Q0 with a non-conducting material which carries a charge of
Q0 5.0 pico-C distributed uniformly throughout its volume.
24 Q0 What is the magnitude of the electric field 1.5 cm from
the center of the sphere?
Q0
A1 $84 \mathrm{~N} / \mathrm{C}$.
$68 \mathrm{~N} / \mathrm{C}$
$17 \mathrm{~N} / \mathrm{C}$.
90 N/C.
zero.
Q0
14 Q0
24 Q0
Q0
Q0
Q0
Q0
A1 9.4*10**4 N*m**2/C.
A2 Zero.
$2.5 * 10^{* *} 3 \mathrm{~N} \mathrm{~m}^{* *} 2 / \mathrm{C}$.
4.5*10**5 N*m**2/C.
8.1*10**5 N*m**2/C.
Q0
15 Q0
24 Q0
0 large neutral conducting sheet, as shown in figure 8. The
surface charge densities (in $C / m^{* *} 2$) on the right, sigma-R
and left, sigma-L, respectively are:
$-3.5 * 10^{* *}(-10) ;+3.5^{*} 10^{* *}(-10)$.
$+3.5 * 10^{* *}(-10) ;-3.5 * 10^{* *}(-10)$.

- 7.0*10**(-10) ; +7.0*10** (-10).
$+7.0^{*} 10^{* *}(-10) ;-7.0^{*} 10^{* *}(-10)$.
zero ; zero.
Find the electrostatic potential at $x=0$ for the following
distribution of charges:-2q at $x=10 \mathrm{~cm}$ and $-2 q$ at $x=-10 \mathrm{~cm}$.
[Take $q=1.0 * 10^{* *}(-9) \mathrm{C}$, and the electrostatic potential at
infinity = 0]
$-360 \mathrm{~V}$.

```
    180 V.
    360 V.
    zero.
    -180 V
    Q0
1 7 \text { Q0}
24
Q0
Q0
A1
    A2 - 2*Q.
    A3 - Q/3.
    A4 Q/2.
    A5 Q/3.
    Q0
18
25
Q0 (b), b > a. The smaller (inner) shell has a positive charge
Q0 (q) and the larger (outer) shell has a charge (Q). If the
Q0 potential of the inner shell is zero, what is the value of Q?
Q0
A1
b*q/a.
2 Q = -a*q/b.
Q Q b*q/a.
    Q = a*q/b.
    Q = - q.
In figure 9, two equal positive charges, each of magnitude
5.0*10**(-5) C, are fixed at point A and B separated by a
distance of }6\textrm{m}.\mathrm{ An equal and opposite charge moves towards
them along the line CO. At point C, 4.0 m from O, the
kinetic energy of the moving charge is 4.0 J. What is the
kinetic energy of this charge when it passes point 0?
    10.0 J.
    4.3 J.
    2.2 J.
    12.5 J.
    19.0 J.
The potential of a charge distribution is given by:
    V(x,y) = A [y*(x**2)- x*(y**2)],
    where A is in appropriate units. The electric field will
    be zero at the point:
        x = 0, and y = 0.
        x = 1, and y = 0.
        x = 0, and y = 1.
        x = 1, and y = 1.
        x = 1, and y = -1.
```


Physics 102

Formula Sheet for $2^{\text {nd }}$ Major Exam
Second Semester 2003-2004 (Term 032)

Figure 1

Figure 5

Figure 2

Figure 4

Figure 6
Fer

