Second Major(T-002)

(1)Q0 What is the change in entropy of $200-\mathrm{g}$ of water as its

002 Q0 temperature increases from 0 degrees Celsius to
21Q0 50 degrees Celsius. [For water: the specific heat =
Q0 $4.19 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$ and the latent heat of fusion $=333 \mathrm{~kJ} / \mathrm{kg}$.
Q0
A1 1.41*10**2 J/K.
A2 0.35*10**3 J/K.
A3 4.19*10**3 J/K.
A4 3.35*10**3 J/K.
A5 2.55*10**3 J/K.
Q0
(2)Q0 An ideal engine absorbs heat at 527 degrees Celsius

002 Q 0 and rejects heat at 127 degrees Celsius. If it has to
21Q0 produce useful mechanical work at the rate of 750 Watts,
Q0 it must absorb heat at the rate of:
Q0
A1 1500 Watts.
A2 750 Watts.
A3 2250 Watts.
A4 527 Watts.
A5 375 Watts.
Q0
(3)Q0 A heat engine has a monatomic gas as the working substance and

21 Q0 its operating cycle is shown by the P-V diagram in Figure 1.
992 Q0 In one cycle, 18.2 kJ of heat energy is absorbed by the
$002 Q 0$ engine. Find the efficiency of the heat engine.
Q0
A1
A2
A3
A4 0.25
A5 0.22
Q0
(4)Q0 A negative charge is placed at the center of a square. Each 002Q0 corner of the square has a fixed charge of $1.00^{* 10^{* *}(-6)} \mathrm{C}$. 22 Q0 If the resulting force acting on each charge is zero,

Q0 the magnitude of the negative charge is:
Q0
A1
$0.96 * 10^{* *}(-6)$ C.
9.60*10** (-6) C.
6.92*10** (-6) C.
0.69*10** (-6) C.
0.77*10** -6) C.
(5) Q0 Two neutral metal sphere are separated by 0.3 km . How much 002 Q 0 electric charge must be transferred from one sphere to the 22 Q0 other so that their electrical attraction is 10**3 N?

Q0
A1
A2
A3
A4
A5
Q0
(6)Q0 A point charge of 4.0 nano-C is located at a point having 23 Q0 coordinates $(30.0 \mathrm{~cm}, 40.0 \mathrm{~cm})$. At what point will the 992Q0 electric field be $72 \mathrm{~N} / \mathrm{C}$ and pointing in the negative 002Q0 y-direction?

Q0
A1 (30.0, -30.7) cm
A2 (30.0, 49.9) cm
A3 (30.0, 70.7) cm
A4 (30.0, -49.9) cm
A5 (10.0, -89.9) cm
Q0
(7)Q0 An electric dipole consists of a positive charge of magnitude $002 \mathrm{Q} 0.0^{*} 10^{* *}(-6) \mathrm{C}$ at the origin and a negative charge of magnitude 002Q0 6.0*10** (-6) C on the x-axis at $x=3.0^{*} 10^{* *}(-3) \mathrm{m}$.
23 Q0 Its dipole moment is:
Q0
A1 $1.8 * 10^{* *}(-8)$ C.m, in the negative x direction
A2
A3
A4
A5
Q0
(8)Q0 A charged particle has a mass of $2.0^{*} 10^{* *}(-4) \mathrm{kg}$. If it is

002Q0 held stationary by a downward 300 N/C electric field, the 23 Q0 charge of the particle is:

Q0
A1
A2
A3
A4
A5
Q0
09 Q0 Two uniformly charged, concentric and hollow, spheres have 24 Q0 radii r and $1.5^{*} r$. The charge of the inner sphere is $q / 2$ and $002 Q 0$ that on the outer sphere is $3 * q / 2$. Find the electric field at Q0 a distance 2.0*r from the center of the spheres.
Q0
A1 $0.5^{*} k^{*} q /\left(r^{* *} 2\right)$.
A2 0.13* $\mathrm{k}^{*} \mathrm{q} /\left(\mathrm{r}^{* *} 2\right)$.
A3 $0.25^{*} k^{*} q /\left(r^{* *} 2\right)$.
A4 0.35*k*q/(r**2).
A5 Zero
Q0
10 Q0 An infinitely long line has a charge density of 7.6 nano-C/m.
24 Q0 Calculate the electric flux through a spherical surface of 992 Q 0 radius $\mathrm{R}=7.7 \mathrm{~cm}$ whose center, C , lies on the line charge as 002Q0 shown in Figure 3.

Q0
A1 $132\left(N^{*} m^{* *} 2\right) / C$.
A2 $415\left(N^{*} m^{* *} 2\right) / C$.
A3 $610\left(N^{*} m^{* *} 2\right) / C$.
A4 92.0 (N*m**2)/C.
A5 Zero.
Q0
11 Q0 Fig. 7 shows two parallel plates, infinite and non-conducting, 24 Q0 with surface charge densities of $8.9 * 10 * *(-4) C / m^{* *} 2$ and $002 \mathrm{Q} 0-8.9^{* 1} 0^{* *}(-4) \mathrm{C} / \mathrm{m}^{* *} 2$. B, a ball with negligible mass, carries Q0 a positive charge of $6.0 * 10^{* *}(-8) \mathrm{C}$ and is attached to point A
Q0 with a non-conducting string of length 10 cm . At equilibrium,
Q0 the tension in the string is:
Q0
A1 6.0 N .
A2 1.5 N .
A3 3.0 N .
A4 0.3 N .

A5
Q0
12 Q0
12 Q0 A particle $\left[m=8.0^{*} 10^{* *}(-9) \mathrm{kg}, \mathrm{q}=+6.0^{*} 10^{* *}(-9) \mathrm{C}\right]$ has
25 Q0 a speed of $80 \mathrm{~m} / \mathrm{s}$ at point A and moves to point B where th
001 Q0 potential is $2.0^{*} 10^{* *} 3 \mathrm{~V}$ greater than at point A. What is
$002 Q 0$ particle's kinetic energy at point B ? (Assume that only
Q0 electric forces act on the particle during its motion.)
12 Q0 A particle $\left[m=8.0^{*} 10^{* *}(-9) \mathrm{kg}, \mathrm{q}=+6.0^{*} 10^{* *}(-9) \mathrm{C}\right]$ has
25 Q0 a speed of $80 \mathrm{~m} / \mathrm{s}$ at point A and moves to point B where the
001 Q0 potential is $2.0^{*} 10^{* *} 3 \mathrm{~V}$ greater than at point A. What is the
002Q0 particle's kinetic energy at point B ? (Assume that only
Q0 electric forces act on the particle during its motion.)
12 Q0 A particle $\left[m=8.0^{*} 10^{* *}(-9) \mathrm{kg}, \mathrm{q}=+6.0^{*} 10^{* *}(-9) \mathrm{C}\right]$ has
25 Q0 a speed of $80 \mathrm{~m} / \mathrm{s}$ at point A and moves to point B where the
001 Q 0 potential is $2.0^{*} 10^{* *} 3 \mathrm{~V}$ greater than at point A. What is the
002 Q 0 particle's kinetic energy at point B ? (Assume that only
Q0 electric forces act on the particle during its motion.)
12 Q0 A particle $\left[m=8.0^{*} 10^{* *}(-9) \mathrm{kg}, \mathrm{q}=+6.0^{*} 10^{* *}(-9) \mathrm{C}\right] \mathrm{h}$
25 Q0 a speed of $80 \mathrm{~m} / \mathrm{s}$ at point A and moves to point B where
001 Q 0 potential is $2.0^{*} 10^{* *} 3 \mathrm{~V}$ greater than at point A. What
002 Q 0 particle's kinetic energy at point B? (Assume that only
Q0 electric forces act on the particle during its motion.)
Q0
A1 14*10** (-6) J.
A2 38*10** (-6) J.
A3
A4
A5
13 Q0 In figure 2, four charges are fixed at the corners of a square
25 Q0 whose sides are of length d. The work done by an external agent 002 Q 0 to bring a fifth charge, Q , from infinity to the center of

Q0 In figure 2, f
Q0 whose sides ar
Q0 to bring a fif
Q0 the square is:
Q0
A1 - $2.8^{*} k^{*} q^{*} Q / d$.
A2
A3
A.
$2.8^{*} k^{*} q^{*} k^{*} q^{*} / d$.
Q0
Q0 In figure 2, f
Q0 whose sides ar
Q0 to bring a fif
Q0 the square is:
Q0
A1 - $2.8^{*} k^{*} q^{*} Q / d$.
A2
A3
1.4***
2.

A3
A4
A5
Q0
14 Q0 25 Q0 002Q0

Q0
Q0
A1
A2
A3
A4
A5
Q0
15 Q0 Which of the following statements are CORRECT:
002 Q 0 2. The potential at the center of a charged conductor is zero.

A1

A2
A3 2 and 4 .
A3 1, 2 and 3.
A4 1, 2, and 5.
A5 3 and 5 .
Zero.

10*10** (-6) J.
28*10** (-6) J.
40*10**(-6) J.
$-1.4^{*} k^{*} q^{*} Q / d$. $3.4 *{ }^{*} q^{*} \mathrm{Q} / \mathrm{d}$.

A charge q is located at the center of a circle with a large radius R, see figure 4. Another charge Q is located on the circumference of the circle at the x-axis. What is the work, in Joules, needed to move Q from its location to point F, on the x-axis, along the circumference?

Zero.
$k^{*} q^{*} Q /(2 * R)$.
$k^{*} q^{*} Q / R$.
2* ${ }^{*} q^{*} Q / R$. $k^{*} q /(2 R)$.

1. Electric charge is quantized. ->
2. If $E=0$ at a point P then V must be zero at P.
3. The electric field inside a charged conductor is zero.
4. If $V=0$ at a point P then E must be zero at P.

1 and 4.
nd 5 .

16 Q0 The equivalent capacitance between points a and b in 002Q0 the combination of capacitors in figure 6 is:
26 Q0
Q0
A1 1.0*10** -6) F .
A2 2.0*10** (-6) F.
A3 1.5*10** (-6) F.
A4 $0.5^{*} 10^{* *}(-6) \mathrm{F}$.
A5
3.0*10** (-6) F.

```
    Q0
17 Q0 A parallel-plate capacitor, of capacitance 1.0*10**(-9) F,
002Q0 is charged by a battery to a potential difference of 12.0 volts.
26 Q0 The charging battery is then disconnected and oil with
    Q0 dielectric constant = 4.0 fills the inside space between the
    Q0 plates. The resulting potential difference, in volts, between
    Q0 the plates is:
    Q0
    A1 3.
    A2 12
    A3 48
    A4 1.0*10**(-9).
    A5 3.0*10**(-9).
    Q0
1 8 \text { Q0 If Vab is equal to 50 V, find the charge stored and the}
26 Q0 potential difference across the 25 micro-F capacitor shown
991Q0 in Figure 5.
002Q0
    A1 250 micro-C and 10 V.
    A2 300 micro-C and 20 V.
    A3 600 micro-C and 10 V.
    A4 600 micro-C and 20 V.
    A5 250 micro-C and 40 V.
    Q0
1 9 ~ Q 0 ~ I f ~ 1 1 0 ~ V o l t s ~ i s ~ a p p l i e d ~ t o ~ a ~ w i r e , ~ t h e ~ c u r r e n t ~ d e n s i t y ~ i s
27 Q0 1.5*10**6 A/m**2. If the resitivity of the wire is
002Q0 48.2*10**(-8) Ohm.m, the length of the wire is:
    Q0
    A1 152 m.
    A2 76 m.
    A3 254 m.
    A4 38 m.
    A5 19 m.
    Q0
20 Q0 At what temperature would the resistance of a conductor be
27 Q0 double its resistance at 30 degrees Celsius?
002Q0 [The temperature coefficient of resistivity of the conductor
    Q0 is 2.0*10**(-2) K**-1]
    Q0
    A1 80 degrees Celsius.
    A2 -20 degrees Celsius.
    A3 20 degrees Celsius.
    A4 50 degrees Celsius.
    A5 60 degrees Celsius.
```


FIGURE 1

FIGURE 3

FIGURE 2

$15 \mu \mathrm{~F}$
FIGURE 5

FIGURE 4

FIGURE 6

FIGURE 7

