First Major (Term 031)

1 Q0 A sinusoidal wave, given by the equation:
17 Q0
Q0
Q0
Q0 where x and y are in meters and t is in seconds, is
Q0 moving in a string of linear density $=1.2 \mathrm{~g} / \mathrm{m}$
Q0 At what rate is the energy transferred by the wave?
Q0
A1 1.32*10** (-2) W.
A2 1.05*10** (-2) W.
A3 3.02*10** (-2) W.
A4 $2.21^{*} 10^{* *}(-2) \mathrm{W}$.
A5 No enough information is given to solve this question.
Q0
2 Q0 A sinusoidal wave is given by the equation:
Q0
17 Q0
Q0
Q0 Which of the following statements is true about this wave:
Q0
A1 The wave is moving to the negative x-axis.
A2 The wave is moving to the positive x-axis.
A3 The wave is a standing wave.
A4 The wave is moving with speed k/w.
A5 The wave is moving with speed kw.
Q0
3Q0 A wave in a string, of linear density $0.13 \mathrm{~g} / \mathrm{m}$,
17Q0 is given by the equation:
Q0
Q0
Q0
Q0
Q0
A1
A1 $8.32 * 10^{* *}(-3) \mathrm{N}$.
A2 2.43*10** (-5) N.
A3 3.90*10** (-3) N.
A4 3.12*10** (-2) N.
A5 2.34*10** (-4) N.
Q0
4 Q0 Two identical sinusoidal waves, are out of phase with each
17 Q0 other, travel in the same direction. They interfere and
Q0 produce a resultant wave given by the equation:
Q0
Q0
Q0
Q0 where x and y are in meters and t is in seconds.
Q0 What is the amplitude of the two interfering waves?
Q0
A1 0.5 m .
A2 1.0 m .
A3 2.5 m .
A4 0.2 m .
A5 4.0 m .
Q0
5 Q0 A string has linear density $=5.1 \mathrm{~g} / \mathrm{m}$ and is under a

17 Q0 tension of 120 N . If the vibrating length of the string Q0 is 60 cm , What is the lowest resonant frequency?
Q0
A1 128 Hz .
A2 158 Hz .
A3 225 Hz .
A4 312 Hz.
A5 Not enough information.
Q0
1 Q0 A listener hears two sound waves from two loud-speakers that
18 Q0 are in phase. At the listener's location a phase difference
Q0 of 450 degrees is detected. What is the path difference
Q0 if the wavelength of the waves is 4 m .
Q0
A1 5 m .
A2 10 m .
A3 99 m .
A4 1 m .
A5
Q0
2 Q0 If an observer's distance from a point source is doubled, 18 Q0 the sound intensity level will be

Q0
A1
A2
A3
A4
A5 Q0
03 Q0
18 00 Th
The bat is emitting a sound with frequency 40.0 kHz . The
frequency of the reflected sound as heard by the bat is:
[take the speed of sound in air $=340 \mathrm{~m} / \mathrm{s}$]
47.7 kHz.
33.5 kHz .
43.9 kHz .
43.5 kHz .
40.0 kHz .

In an air pipe, closed at one end, the three successive
resonance frequencies are $425 \mathrm{~Hz}, 595 \mathrm{~Hz}$, and 765 Hz . If the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$, the length of the pipe is:
1.0 m.
2.0 m .
0.5 m .
2.5 m .
1.5 m .

5 Q0 Two waves are given by the equations:
Q0
18Q0
Q0
Q0
Q0 where x and y are in meters and t is in seconds. The
Q0 intensity ratio of I1/I2 of the two waves is:

Q0
Q0 A1

A rod is made of two different metals, one piece has
$19 Q 0$ length L and thermal conductivity K and the other piece Q0 has a length 2 L and thermal conductivity 3 K . The rod Q0 is situated between two heat reservoirs as shown in Q0 Fig. 1. What is the steady state temperature at the Q0 interface of the two pieces ?
Q0
A1
A2
A3
A4
A5
Q0
2 QQ
19 Q0

Q0 by 6.9*10**(-5) m**3.If the original volume
Q0 is 1.8*10**(-2) m**3, find the coefficient of
Q) linear expansion of the sphere.

Q0
A1
A2
A3
A4
A5
Q0
5 Q0 Liquid nitrogen boils at temperature of -196 degrees Celsius
19Q0 when the pressure is one atmosphere. A silver coin of
Q0 mass $1.5^{*} 10^{* *}(-2) \mathrm{Kg}$ and temperature 25 degrees Celsius

Q0 is dropped into the liquid. What mass of nitrogen boils
Q0 off as the coin cools to - 196 degrees Celsius.
Q0 [Take the specific heat of silver $=235 \mathrm{~J} / \mathrm{Kg} / \mathrm{K}$ and latent heat
Q0 of vaporization for liquid nitrogen is 2.0*10**5 J/Kg.
Q0
A1 $\quad 3.90 \mathrm{~g}$.
A2 $\quad 8.10 \mathrm{~g}$.
A3 20.1 g .
A4 89.0 g .
A5
Q0
1 Q0 Two moles of nitrogen are in a 3-liter container at a
20Q0 pressure of 5.0*10**6 Pa. Find the average translational
Q0 kinetic energy of a molecule.
Q0
A1
A2
A3
A4
A5
Q0
2 Q0
Q0 Q0 Q0
A1 6.23 kJ .
A2 2.63 kJ .
A3 3.11 kJ .
A4 1.51 kJ .
A5 8.52 kJ .
Q0
3 Q0 An ideal diatomic gas, initially at a pressure Pi $=1.0 \mathrm{~atm}$ 20 Q0 and volume Vi, is allowed to expand isothermally until it's

Q0 volume doubles. The gas is then compressed adiabatically
Q0 until it reaches its original volume. The final pressure of Q0 the gas will be:
Q0
A1 1.3 atm .
A2 0.5 atm .
A3
A4
A5
4 Q0
pressure of 1.0*10**2 Pascal from a volume of $1.0 \mathrm{m**} 3$ to to a volume of $3.0 \mathrm{~m}^{* *} 3$. What is the change in the internal
Five moles, of an ide
pressure of $1.0 * 10^{* *} 2$
to a volume of $3.0 \mathrm{~m}^{*}$
energy of the system?
Q0
A1
A2
A3
A4
A5
Q0
Q5 Q0
20Q0
Q0

20 Q0 degrees Celsius to 250 degrees Celsius. How much heat is
$1.9 * 10 * *(-20) \mathrm{J}$.

* -22) J.
..10** -20) J.
(23) J.
1.0*10** (-24) J.

Two moles of helium (monatomic) gas are heated from 100
transferred to the gas if the process is done at constant pressure?
2.0 atm.
0.4 atm.
1.7 atm .

300 J.
500 J.
600 J.
100 J.
1000 J.
For an ideal gas, which of the following statements are CORRECT:

```
Q0 1. Cp - Cv = R/2.
Q0 2. In an isothermal process, the internal energy of the
Q0 system does not change.
Q0 3. In an adiabatic process, no heat enters or leaves the system.
Q0 4. In a constant volume process, the work done by the system is
Q0 positive.
Q0
A1 }2\mathrm{ and 3.
A2 1 and 3.
A3 1, 2 and 4.
A4 2 and 4.
A5 3 and 4.
```

\{ SHAPE * MERGEFORMAT \} SHAPE * MERGEFORMAT \}

Figure 1

Figure 2

