FINAL EXAM

T-032

```
1 \mp@code { Q 0 ~ A ~ s t r i n g ~ 1 8 0 ~ c m ~ l o n g ~ h a s ~ a ~ f u n d a m e n t a l ~ f r e q u e n c y ~ o f ~ v i b r a t i o n }
1 7 ~ Q 0 ~ o f ~ 3 0 0 ~ H z . ~ W h a t ~ l e n g t h ~ o f ~ t h e ~ s a m e ~ s t r i n g , ~ u n d e r ~ t h e ~ s a m e
tension, will have a fundamental frequency of 200 Hz?
270 cm.
147 cm
120 cm.
220 cm
900 cm
A point source emits 30 W of sound. A small microphone
has an area of 0.75 cm**2 is placed 10 m from the point
source. What power does the microphone receive?
1.8 micro-W.
3.6 micro-W.
0.1 micro-W.
9.3 micro-W.
30 micro-W.
QO
3 Q0 A closed tank, at room temperature, has a mixture of hydrogen
1 9 ~ Q 0 ~ m o l e c u l e s ~ a n d ~ h e l i u m ~ a t o m s . ~ T h e ~ r a t i o ~ o f ~ r m s ~ s p e e d ~ o f
hydrogen molecules to that of helium is:
[Note: The molar mass of the hydrogen molecule is 2.0 g/mol
and the molar mass of the helium atom is 4.0 g/mol]
1.4
2.1
3.2
0.1
0.3
Q0
4 Q0 A Carnot engine has an efficiency of 20%. It operates between
2 1 ~ Q 0 ~ t w o ~ c o n s t a n t - t e m p e r a t u r e ~ r e s e r v o i r s ~ d i f f e r i n g ~ i n ~ t e m p e r a t u r e
by 70.0 K. What is the temperature of the HOT reservoir?
    350 K
    280 K.
    300 K.
    400 K.
    70 K.
In figure (1), if Q = 30 micro-C, q = 5.0 micro-C and d = 0.3 m,
find the net force on q. [i and j are the unit vectors in the
positive direction of x-axis and y-axis, respectively].
        zero.
        7.5 i (N).
    -7.5 i (N).
    -3.8 j (N).
        3.8 i (N).
    Q0
6 \mp@code { Q 0 ~ A ~ m e t a l l i c ~ s p h e r e , ~ i n ~ e l e c t r o s t a t i c ~ e q u i l i b r i u m , ~ h a s ~ a }
```

A4 iii, and iv only.
A5 i, ii, and iv only.
Q0
7 Q0 The electric field 20 mm from a certain point charge has
23 Q0 a magnitude $|E|$. The magnitude of the electric field
10 mm from the point charge is

| $4.0 *$ | E | . |
| :--- | :--- | :--- | :--- |
| $2.0 *$ | E | . |
| $1.5 *$ | E | . |
| $6.0 *$ | E | . |

zero.
In figure (2), find the charge stored by the capacitor C3
if the potential difference across the battery is 10.0 V .
Use the values $\mathrm{C} 1=\mathrm{C} 2=2.0 \mathrm{micro}-\mathrm{F}$ and $\mathrm{C} 3=4.00 \mathrm{micro-F}$.
20 micro-C.
10 micro-C.
15 micro-C.
30 micro-C.
99 micro-C.
Two concentric spherical shells of radii 10 cm and 5.0 cm
are charged to a potential difference of 20 V . How
much energy is stored in this spherical capacitor?
Q0
A1 2.2*10** (-9) J.
A2 $1.3 * 10 * *(-9) \mathrm{J}$.
A3 $3.1 * 10 * *(-7) \mathrm{J}$.
A4 $5.4 * 10 * *(-9) \mathrm{J}$.
A5 9.8*10** (-8) J .
Q0
10 Q0 A parallel-plate air-filled capacitor, of area $25 \mathrm{~cm} * * 2$ and
26 Q0 plate separation of 1.0 mm , is charged to a potential
Q0 difference of 600 V . Find the energy density between
the plates.
Q0
A1 $1.6 \mathrm{~J} / \mathrm{m} * * 3$.
A2 $0.3 \mathrm{~J} / \mathrm{m} \star * 3$.
A3 7.4 J/m**3.
A4 $3.2 \mathrm{~J} / \mathrm{m} * * 3$.
A5 $1.9 \mathrm{~J} / \mathrm{m} \star * 3$.
Q0
11 QO A parallel-plate capacitor has an area A and a separation d.
Q0 Find its capacitance if it is filled with two dielectrics as

```
2 6 ~ Q 0 ~ s h o w n ~ i n ~ f i g u r e ~ 3 . ~ [ C o ~ i s ~ t h e ~ c a p a c i t a n c e ~ o f ~ t h e ~ a i r - f i l l e d ~
parallel-plate capacitor. K1 = 3 and K2 = 1.5 are the
dielectric constants]
Q0
A1 2*Co.
        6* Co.
        3*Co.
        4*Co.
        Co.
    Q0
12 00
2 7 \text { Q0 when its temperature was raised above room temperature. Find}
the final temperature of the wire if the temperature
coefficient of resistivity for copper is 4.0*10** (-3) / K.
[Assume the room temperature = 290 K]
        340 K.
        351 K.
        300 K.
        322 K.
        999 K.
    A potential difference of 9.0 V is applied across the length
    of a cylindrical conductor with radius 2.0 mm. Calculate the
    current density if the conductor has a resistance of 90 ohms.
        8.0*10**3 A/m**2.
        5.0*10**3 A/m**2.
        6.0*10**3 A/m**2.
        2.0*10**3 A/m**2.
        2.3*10**7 A/m**2.
    A current of 5.0 A exists in a 10 ohms resistor for 5.0 min.
    How many electrons pass through any cross section of the
    resistor in this time?
        9.4*10**21
        6.1*10**23
        1.2*10**21
        3.3*10**22
        7.8*10**21
    A 6-V battery supplies a total of 48 W to two identical
    light bulbs connected in parallel. The resistance (in ohm)
    of each bulb is
        1.5
        0.7
        3.0
        4.0
        1.0
    Q0
1 6 ~ Q 0 ~ A ~ c a p a c i t o r , ~ i n i t i a l l y ~ u n c h a r g e d ~ i n ~ a ~ s i n g l e - l o o p ~ R C ~ c i r c u i t ,
Q0 is charged to 85% of its final potential difference in 2.4 s.
2 8 \text { Q0 What is its time constant in seconds?}
QO
A1 1.3
```

```
    A2 1.5
    A3 1.7
    A4 2.8
    A5 zero
    Q0
17 Q0 Find the potential difference (VB-VA) between points B and
28 QO A of the circuit shown in figure (4)
Q0
    A1 - }10\mathrm{ volts.
        10 volts.
    - 5 volts.
        volts.
        20 volts.
    Find the value of R1 in the circuit of figure (5)
28 Q0
    Q0
    A1 6.0 ohms.
    9.0 ohms.
    8.0 ohms.
    4.0 ohms.
    2.0 ohms.
    Q0
19 Q0 Figure 6 shows the circular paths of an electron and a proton
29 Q0 that travel at the same speed in a uniform magnetic field B,
which points into the page.
    (a) Which particle follows the bigger circle, and
    (b) does that particle travel clockwise or counterclockwise?
        (a) proton (b) counterclockwise
        (a) proton
        (b) clockwise
        (a) electron (b) counterclockwise
        (a) electron (b) clockwise
        Not enough information given.
        In figure 7, a rectangular loop, L1 = 2.0 cm by L2 = 3.0 cm,
    carrying a current I = 0.1 A, is suspended from a spring of
    spring constant, k = 8.0*10**(-2) N/m. The loop is placed
    into a uniform magnetic field, which points into the page,
    and the spring is observed to stretch 1.0 cm. What is the
    magnitude of the magnetic field?
    [Neglect the mass of the loop]
        0.4 T.
        0.1 T.
        0.3 T.
        0.5 T.
        0.2 T.
    Q0
21 Q0 At a point in a uniform magnetic field the acceleration of an
29 QO electron is 5.0*10**14 m/s**2 and its speed is 7.0*10**6 m/s.
    If the magnitude of the magnetic field is 1.0 mT, what is the
    angle between the electron's velocity and the magnetic field?
    Q0
    Q0
A1 24 degrees.
29 degrees.
```

```
    A3 45 degrees.
    40 degrees.
zero degrees.
    Q0
2 2 ~ Q 0 ~ A ~ p r o t o n ~ m o v e s ~ w i t h ~ c o n s t a n t ~ v e l o c i t y , ~ v ~ = ~ ( 8 . 0 * 1 0 * * 5 ~ m / s ) ~ i ,
2 9 ~ Q 0 ~ t h r o u g h ~ c r o s s e d ~ e l e c t r i c ~ a n d ~ m a g n e t i c ~ f i e l d s . ~ I f ~ t h e
Q0 magnetic field is B = (2.5 mT) j, what is the electric field?
Q0 [i, j and k are the unit vectors in the positive x, y and
QO z directions, respectively].
Q0
A1 (-2.0 kV/m) k.
A2 (+2.0 kV/m) k
A3 (-1.0 kV/m) k.
A4 (+1.0 kV/m) j.
A5 (-2.5 kV/m) i.
Q0
2 3 ~ Q 0 ~ W h i c h ~ o n e ~ o f ~ t h e ~ f o l l o w i n g ~ s t a t e m e n t s ~ i s ~ F A L S E ~ ( N O T ~ T R U E ) .
29 Q0 A uniform magnetic field
Q0
A1 changes the kinetic energy of a charge.
exerts a force on a moving charge.
accelerates a moving charge.
of the earth is a measurable quantity.
changes the momentum of a moving charge.
Q0
24 Q0
Figure (8) shows two concentric circular loops of radii a
and b and both carry a current I. Find the resultant
magnetic field at the center of the two loops if a = 10 cm,
b = 20 cm and I = 20 A.
63 micro-T, out of the page.
19 micro-T, into the page.
15 micro-T, out of the page.
15 micro-T, into the page.
zero.
Two long parallel wires, D and B, are separated by 2.0 cm.
30
Q0 The current in D is THREE times the current in B. If the
magnitude of the force on 2.0 m length of one of the wires
is equal to }60\mathrm{ micro-N, find the current in B.
1.0 A.
2.0 A.
1.5 A.
5.0 A.
0.5 A.
The radius R of a long current-carrying wire is 2.3 cm. If
the magnetic field at r1 = 2.0 cm is equal to THREE times
the magnetic field at r2, r2 > R, calculate the distance r2.
QO
A1 7.9 cm.
3.8 cm
5.2 cm
4.4 cm
2.0 cm
QO
```

```
27 Q0 A hollow cylindrical conductor of inner radius 3.0 mm and
3 0 ~ Q 0 ~ o u t e r ~ r a d i u s ~ 5 . 0 ~ m m ~ c a r r i e s ~ a ~ c u r r e n t ~ o f ~ 8 0 ~ A ~ p a r a l l e l ~ t o
Q0 its axis. The current is uniformly distributed over the
QO cross section of the conductor. Find the magnitude of the
Q0 magnetic field at a point that is 2.0 mm from the axis of
Q0 the conductor.
Q0
A1 zero.
8.0 mT.
5.3 mT.
10 mT
0.7 mT
Q0
2 8 ~ Q 0 ~ A ~ 4 0 0 - t u r n ~ c o i l ~ o f ~ t o t a l ~ r e s i s t a n c e ~ 6 . 0 ~ o h m ~ h a s ~ a ~ c r o s s
3 1 ~ Q 0 ~ s e c t i o n a l ~ a r e a ~ o f ~ 3 0 ~ c m * * 2 . ~ H o w ~ r a p i d l y ~ s h o u l d ~ a ~ m a g n e t i c
QO field parallel to the coil axis change in order to induce
Q0 a current of 0.3 A in the coil?
Q0
A1 1.5 T/s.
A2 0.25 T/s.
A3 0.67 T/s.
A4 2.8 T/s.
A5 0.04 T/s.
Q0
29 QO A circular wire loop of area 0.5 m**2 is perpendicular
3 1 ~ Q 0 ~ t o ~ a ~ m a g n e t i c ~ f i e l d ~ o f ~ 0 . 8 ~ T . ~ I f ~ t h e ~ c o i l ~ i s ~ r e m o v e d ~
QO completely from the field in 0.1 s, the average emf
QO induced in the loop has a magnitude
Q0
A1 4.0 V.
A2 8.0 V.
A3 2.0 V.
A4 5.0 V.
A5 1.0 V.
Q0
30 Q0 A long straight wire carrying a constant current I is in the
3 1 ~ Q 0 ~ p l a n e ~ o f ~ a ~ c i r c u l a r ~ c o n d u c t i n g ~ l o o p ~ a s ~ s h o w n ~ i n ~ f i g u r e ~ ( 9 ) .
Q0 If the wire is moved away from the loop toward point A, the
Q0 current induced in the loop is
QO
A1
A2 countercl
A2 counterclockwise.
A3 zero.
A4 into the page.
A5 out of the page.
```


Figure 1

Figure 6

Figure 4

Figure 7

Figure 9

