Final Exam

T-031

1 tuning fork, of frequency of 512 Hz , is used to generate Q0 the fundamental resonance in an open, at both ends, air tube Q0 of length 30 cm . The frequency of the fork that used to Q0 generate the fundamental resonance in the same air column Q0 when one of its ends is closed is:
Q0
A1
A2
A3
A4
A5
2 Q0

Q0

Q0
Q0
Q0
Q0
A1
A2
A3
A4
A5
Q0
3 Q0
Q0
A1
A2
A3
A4
A5
Q0
4 Q0
Q0

Q0

Q0
Q0
A1
A2
A3
A4
A5
Q0
5 Q0
Q0
Q0
A1 7 dB .
A2
A3
A4
A5
Q0
6 Q0 The average translation kinetic energy of an ideal gas
Q0 of helium atoms at room temperature (300 Kelvin) is
Q0 5.54*10** (-21) J. The average translation kinetic energy
Q0 of the ideal argon gas at room temperature is:

```
[Atomic mass of helium = 2.0 Kg/Kmole,
Atomic mass of argon = 8.0 Kg/Kmole]
A1 5.54*10**(-21) J.
A2 1.11*10**(-20) J.
A3 2.21*10**(-20) J.
```

Q0
A4
A5
Q0
Q0
7 Q0 A bar of copper is heated from 280 K to 300 K . Which of the
Q0
Q0
A1
A2
A3
A4
A5
Q0
8 Q0 In a vibrating string waves travel a distance of 45 cm in
Q0 3.0 s . If the distance between two successive crests is
Q0 3.0 cm , what is the frequency of the vibrator causing
Q0 the waves?
Q0
A1 5.0 Hz .
7.5 Hz .
11.5 Hz .
20.0 Hz .
15.0 Hz .
Q0

A3 4.25 kg .
A4 12.5 kg .
A5 9.22 kg .
Q0
10 Q0 An ideal heat engine has a power output of 200 W . The engine
Q0 operates between two reservoirs at 300 K and 600 K .
Q0 How much energy is absorbed per hour?
Q0
A1 1.44*10**6 J.
A2 $1.92 * 10^{* *} 6 \mathrm{~J}$.
A3 6.31*10**3 J.
A4 $5.46 * 10^{* *} 6 \mathrm{~J}$.
A5 1.93*10**5 J.
Q0
11 Q0 Two moles of helium gas (monatomic) are initially at
Q0 a temperature of 27.0 degrees-C and occupy a volume
Q0 of 20.0 liters. The helium gas is expanded at constant
Q0 pressure until its volume is doubled. Find the change
Q0 in the internal energy.
Q0
A1
A2
7.5*10**3 J.
9.2*10**3 J
1.3*10**3 J.
$5.4 * 10^{* *} 6 \mathrm{~J}$.

A5
Q0
12 Q

> Q0 n

Q0
Q0
A1
A2
A3
A4
A5
Q0 Q0
13 Q0

Q0
A1
A2
A3
A4
A5 Q0

Q0

Q0
Q0

A1

A2
A3
A4
A5
Q0
15 Q0 A heater element of resistance 10**3 Ohm is constructed
27 Q0 to operate at 110 V . How much thermal energy is produced Q0 in one hour by the heater?
Q0
A1 $4.4 * 10 * * 4 \mathrm{~J}$.
A2 $1.9 * 10^{* *} 5 \mathrm{~J}$.
A3 6.2*10**5 J.
A4 $5.1 * 10^{* *} 2 \mathrm{~J}$.
A5
Q0
16 Q0

Q0

Q0
Q0
A1
A2
A3
Ohm.
Q0
17 Q0 A resistor $\mathrm{R}=30^{*} 10^{* *} 6 \mathrm{Ohm}$ is connected in series with
28 Q0 a capacitor $C=3.0$ micro-F and a 21 -Volt battery for
Q0 long time. The battery was removed, then R and C are
Q0 connected in a loop. What is the energy stored in the
Q0 capacitor C after one minute?

```
    Q0
    A1 }174\mathrm{ micro-J.
        47 micro-J.
        204 micro-J.
        24 micro-J.
        11 micro-J
In figure 3, if R = 10 Ohm find the current in R.
18 Q0
28 Q0
    Q0
    A1
    A2
    A3
    A4
    A5
    Q0
19Q0
28Q0
    A1 9.0 W.
    A2 3.0 W.
    A3 1.2 W.
    A4 6.0 W.
    A5 4.3 W.
    Q0
20 Q0 An electron that has velocity
29 Q0
    Q0
    Q0 v = 3.2*10**7 i m/s
    Q0
    0
    Q0
    Q0 
    [i is the unit vectors in the directions of x]
    Q0
    A1 zero.
    A2 6.1*10**(-15) N.
    2.3*10**(-15) N.
    1.4*10**(-15) N.
    5.0*10**(-15) N.
    Q0
21 Q0 A straight horizontal length of copper wire is located in a
29 Q0 place where the magnetic field of the earth B = 0.5*10**(-4)T
    Q0 (see figure 5). What minimum current in the wire is needed
    Q0 to balance the gravitational force on the wire?
    Q0 [The linear density of the wire is 60.0 gram/m]
    Q0
    A1 1.2*10**4 A into the page.
    A2 1.2*10**4 A out of the page.
    A3 4.3*10**4 A into the page.
    A4 4.3*10**4 A out of the page.
    A5
    Q0
22 Q0 The path of a charged particle in a magnetic field, when
2 9 ~ Q 0 ~ i t s ~ d i r e c t i o n ~ o f ~ m o t i o n ~ i s ~ n o t ~ a t ~ r i g h t ~ a n g l e ~ t o ~ t h e
Q0 magnetic field, will be a:
Q0
A1 helix.
A2 circle.
A3 parabola.
A4 straight line.
A5 hyperbola.
```

```
    Q0
23 Q0 An electron moving at right angle to a uniform magnetic
2 9 ~ Q 0 ~ f i e l d ~ c o m p l e t e s ~ a ~ c i r c u l a r ~ o r b i t ~ i n ~ 1 0 * * ( - 8 ) ~ s . ~ W h a t
    Q0 is the magnitude of the magnetic field.
    Q0
    A1
    A2
    A3
    A4
    A5
    Q0
24 Q0
3 0 \text { Q}
    Q0
    Q0
    Q0
    A1
    A2
    A3
    A4
    A5
    Q0
25Q0
30Q0 as shown in Figure 6. The magnetic force exerted on wire
    Q0 "A" is:
    Q0
    A1
    A2
    A3
    A4
    A5
    Q0
26 Q0
30 Q
    Q0
    Q0
    Q0
    Q0
    A1 }6
    A2 4.
    A3 3.
    A4 2
    1.
The segment of wire is formed into the shape as shown in
Figure 7 and carries a current I = 6 A. When R = 6.28 cm,
    what is the magnetic field at the point P?
    Q0
    Q0
    A1
    A2
    A3
    Q0
2 8 ~ Q 0 ~ A ~ l o n g ~ s t r a i g h t ~ w i r e ~ i s ~ i n ~ t h e ~ p l a n e ~ o f ~ a ~ r e c t a n g u l a r ~
3 1 ~ Q 0 ~ c o n d u c t i n g ~ l o o p ~ a s ~ s h o w n ~ i n ~ F i g u r e ~ 8 . ~ T h e ~ s t r a i g h t ~
    Q0 wire carries an increasing current "i" in the direction
    Q0 shown. The current in the rectangular is:
    Q0
    A1 counter clockwise.
```

```
    A2 clockwise.
2 9 ~ Q 0 ~ T h e ~ c i r c u i t ~ s h o w n ~ i n ~ f i g u r e ~ 9 ~ i s ~ i n ~ a ~ u n i f o r m ~ m a g n e t i c ~ f i e l d
3 1 ~ Q 0 ~ t h a t ~ i s ~ i n t o ~ t h e ~ p a g e ~ a n d ~ i s ~ d e c r e a s i n g ~ i n ~ t h e ~ m a g n i t u d e
Q0 at the rate of 150 T/s. The current in the circuit is:
Q0
A1 0.22 A.
A2
3 0 ~ Q 0 ~ F i g u r e ~ 1 0 ~ s h o w s ~ a ~ b a r ~ m o v i n g ~ t o ~ t h e ~ r i g h t ~ o n ~ t w o ~ c o n d u c t i n g
31 Q0 rails. To make an induced current in the direction
Q0 indicated, a constant magnetic field in region "A" should
Q0 be in what direction?
Q0
A1 Into the page.
A2
```

A3
A4

```
    zero.
    clockwise in the left side and counter clockwise in
    the right side.
    counter clockwise in the left side and clockwise
    in the right side.
    0.15 A.
    0.40 A.
    0.18 A.
    0.62 A.
    Out of the page.
    Left.
    Right.
    Impossible; this cannot be done with a constant
    magnetic field.
```


Figure 1

Figure 9
Figure 10

